亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation

人工智能 计算机科学 分割 域适应 像素 图像分割 透视图(图形) 模式识别(心理学) 尺度空间分割 计算机视觉 分类器(UML)
作者
Ye Du,Zehua Fu,Qingjie Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4654-4669 被引量:4
标识
DOI:10.1109/tip.2024.3444190
摘要

Recent attention has been devoted to the pursuit of learning semantic segmentation models exclusively from image tags, a paradigm known as image-level Weakly Supervised Semantic Segmentation (WSSS). Existing attempts adopt the Class Activation Maps (CAMs) as priors to mine object regions yet observe the imbalanced activation issue, where only the most discriminative object parts are located. In this paper, we argue that the distribution discrepancy between the discriminative and the non-discriminative parts of objects prevents the model from producing complete and precise pseudo masks as ground truths. For this purpose, we propose a Pixel-Level Domain Adaptation (PLDA) method to encourage the model in learning pixel-wise domain-invariant features. Specifically, a multi-head domain classifier trained adversarially with the feature extraction is introduced to promote the emergence of pixel features that are invariant with respect to the shift between the source (i.e., the discriminative object parts) and the target (i.e., the non-discriminative object parts) domains. In addition, we come up with a Confident Pseudo-Supervision strategy to guarantee the discriminative ability of each pixel for the segmentation task, which serves as a complement to the intra-image domain adversarial training. Our method is conceptually simple, intuitive and can be easily integrated into existing WSSS methods. Taking several strong baseline models as instances, we experimentally demonstrate the effectiveness of our approach under a wide range of settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZBQ发布了新的文献求助10
2秒前
2秒前
8秒前
爱妍发布了新的文献求助10
13秒前
18秒前
25秒前
爱妍完成签到,获得积分20
26秒前
彭于晏应助study采纳,获得10
28秒前
37秒前
study完成签到,获得积分10
39秒前
46秒前
可爱的函函应助study采纳,获得10
48秒前
1分钟前
study发布了新的文献求助10
1分钟前
1分钟前
study发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hehe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Huzhu应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
2分钟前
完美世界应助阿巴采纳,获得10
3分钟前
3分钟前
3分钟前
香蕉觅云应助小兔子采纳,获得10
3分钟前
4分钟前
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
hanawang应助科研通管家采纳,获得10
4分钟前
小兔子发布了新的文献求助10
4分钟前
852应助烛夜黎采纳,获得10
4分钟前
Cherry完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505