Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning

计算生物学 癌症 计算机科学 细胞 生物信息学 生物 遗传学
作者
Shu-Long Dai,Jian-Qiang Pan,Zhen-Rong Su
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-73071-x
摘要

Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenvironment (TME). Nevertheless, elucidating the precise effect of ICD on GC remains a challenging endeavour. ICD-related genes were identified in single-cell sequencing datasets and bulk transcriptome sequencing datasets via the AddModuleScore function, weighted gene co-expression network (WGCNA), and differential expression analysis. A robust signature associated with ICD was constructed using a machine learning computational framework incorporating 101 algorithms. Furthermore, multiomics analysis, including single-cell sequencing analysis, bulk transcriptomic analysis, and proteomics analysis, was conducted to verify the correlation of these hub genes with the immune microenvironment features of GC and with GC invasion and metastasis. We screened 59 genes associated with ICD and developed a robust ICD-related gene signature (ICDRS) via a machine learning computational framework that integrates 101 different algorithms. Furthermore, we identified five key hub genes (SMAP2, TNFAIP8, LBH, TXNIP, and PIK3IP1) from the ICDRS. Through single-cell analysis of GC tumor s, we confirmed the strong correlations of the hub genes with immune microenvironment features. Among these five genes, LBH exhibited the most significant associations with a poor prognosis and with the invasion and metastasis of GC. Finally, our findings were validated through immunohistochemical staining of a large clinical sample set, and the results further supported that LBH promotes GC cell invasion by activating the epithelial-mesenchymal transition (EMT) pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
吹雪完成签到,获得积分0
1秒前
田様应助WJ采纳,获得10
1秒前
美满的泥猴桃完成签到 ,获得积分10
2秒前
小毛毛想睡觉完成签到 ,获得积分10
3秒前
心想事成发布了新的文献求助10
4秒前
Eliauk完成签到,获得积分10
5秒前
苦咖啡行僧完成签到 ,获得积分10
7秒前
热心的善愁完成签到,获得积分10
9秒前
WJ完成签到,获得积分10
10秒前
Andorchid完成签到,获得积分10
11秒前
庞伟泽完成签到,获得积分10
13秒前
壹拾柒完成签到,获得积分10
15秒前
lili完成签到 ,获得积分10
19秒前
20秒前
润润轩轩完成签到 ,获得积分10
20秒前
小米的稻田完成签到 ,获得积分10
20秒前
niccer完成签到,获得积分10
21秒前
zyc完成签到,获得积分10
22秒前
yull完成签到,获得积分10
23秒前
跳跳发布了新的文献求助10
25秒前
鱼饼完成签到 ,获得积分10
25秒前
MHCL完成签到 ,获得积分10
25秒前
kento发布了新的文献求助100
27秒前
思源应助诗亭采纳,获得10
27秒前
Dfish完成签到,获得积分10
28秒前
BruceQ完成签到,获得积分10
28秒前
成就绮琴完成签到 ,获得积分10
28秒前
笨笨念文完成签到 ,获得积分10
29秒前
sun完成签到 ,获得积分10
30秒前
WSYang完成签到,获得积分10
30秒前
斯文雪青完成签到,获得积分10
33秒前
南城以南完成签到,获得积分10
33秒前
34秒前
alanbike完成签到,获得积分10
35秒前
跳跳完成签到,获得积分10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308