标度系数
自愈水凝胶
材料科学
丙烯酸
极限抗拉强度
韧性
复合材料
纤维
丙烯酰胺
软机器人
配体(生物化学)
化学工程
聚合物
高分子化学
共聚物
计算机科学
执行机构
制作
化学
生物化学
替代医学
受体
人工智能
病理
工程类
医学
作者
Longya Xiao,Chengjian Ou,Ding Zhang,Yi Ma,Zefeng Xu,Yitong Zhou,Hongjie Jiang
标识
DOI:10.1002/mame.202200389
摘要
Abstract Developing conductive hydrogel‐incorporated strain sensors with high gauge factor (GF) and toughness for wearable applications is challenging. Herein, a facile strategy to fabricate strong, tough polyacrylamide‐ co ‐acrylic acid [P(AAm‐ co ‐AAc)] hydrogels via the synergy of fiber and metal‐ligand bonds is proposed. Through the secondary equilibrium approach, the pristine P(AAm‐ co ‐AAc) gel network is reconstructed with fiber and carboxyl–Zr 4+ (Zirconium ion) coordination bonds intertwined over the entire gel matrix, generating a synergistic reinforcement in mechanical properties. The resultant hydrogels display a maximum tensile strength of 8.50 MPa and a fracture energy of 2.75 kJ m −2 , which is 1–2 orders of magnitude greater than the original P(AAm‐ co ‐AAc) gels. It is also experimentally approved that by selecting different natural fibers, multivalent metal ions, and synthetic macromolecules containing carboxyl groups, the proposed approach is effective and can be generalized to fabricate strong, tough gels. Additionally, the electrical properties of obtained gel are evaluated by fabricating it into a stretchable strain sensor for object identification or human motion detection. The results reveal a high GF of 5.07 under a strain smaller 55%. These hydrogels are expected to enable numerous applications in soft robotics or wearable healthcare.
科研通智能强力驱动
Strongly Powered by AbleSci AI