对足点
抓住
卷积神经网络
计算机科学
人工智能
残余物
集合(抽象数据类型)
模块化设计
计算机视觉
频道(广播)
图像(数学)
模式识别(心理学)
算法
数学
计算机网络
几何学
程序设计语言
操作系统
作者
Sulabh Kumra,Shirin Joshi,Ferat Sahin
出处
期刊:Cornell University - arXiv
日期:2019-01-01
标识
DOI:10.48550/arxiv.1909.04810
摘要
In this paper, we present a modular robotic system to tackle the problem of generating and performing antipodal robotic grasps for unknown objects from n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (~20ms). We evaluate the proposed model architecture on standard datasets and a diverse set of household objects. We achieved state-of-the-art accuracy of 97.7% and 94.6% on Cornell and Jacquard grasping datasets respectively. We also demonstrate a grasp success rate of 95.4% and 93% on household and adversarial objects respectively using a 7 DoF robotic arm.
科研通智能强力驱动
Strongly Powered by AbleSci AI