Learning-based image steganography and watermarking: A survey

计算机科学 隐写术 数字水印 图像(数学) 人工智能 隐写工具 计算机视觉 计算机安全
作者
Kun Hu,Mingpei Wang,MA Xiao-hui,Jia Chen,Xiaochao Wang,Xingjun Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123715-123715 被引量:40
标识
DOI:10.1016/j.eswa.2024.123715
摘要

Extensive research has been conducted on image steganography and watermarking algorithms , owing to their crucial rules in secret data transmission, copyright protection , and traceability. Despite promising results and numerous surveys proposed in the literature, there is still a lack of comprehensive analysis dedicated to deep learning-based image steganography and watermarking algorithms. In this paper, we focus on investigating three important aspects: neural networks , structure models, and training strategies. Our review covers the vast literature in this field. Furthermore, we provide a comprehensive statistical analysis from diverse perspectives, including models, loss functions, platforms, datasets, and attacks. Moreover, we conduct in a thorough comparative analysis and evaluation of existing representative algorithms, assessing their effectiveness within the context of deep learning . Finally, the challenges and potential research directions in the domain of deep-learning image steganography and watermarking algorithms are discussed to facilitate future research. • Comprehensive review of deep learning-based image steganography and watermarking. • In-depth analysis of neural networks , structure models, and training strategies. • Extensive statistical analysis of current models, datasets, attack, and platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
科目三应助数值分析采纳,获得10
1秒前
2秒前
2秒前
乐乐应助袁小破采纳,获得10
2秒前
Kinspact发布了新的文献求助10
3秒前
XCL完成签到,获得积分10
3秒前
Ava应助小SU哥采纳,获得10
3秒前
鱼鱼子完成签到,获得积分20
4秒前
王三石发布了新的文献求助10
4秒前
在水一方应助Aurora采纳,获得10
4秒前
xcl完成签到,获得积分10
5秒前
5秒前
蒙蒙细雨发布了新的文献求助10
6秒前
6秒前
and999发布了新的文献求助10
7秒前
小蘑菇应助brendel采纳,获得10
7秒前
7秒前
宇宙超级无敌涛完成签到,获得积分10
7秒前
周em12_发布了新的文献求助10
9秒前
橙橙妈妈完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
Maestro_S应助zero37采纳,获得30
10秒前
ding应助wqwqwqwqwq采纳,获得10
10秒前
10秒前
英姑应助kk采纳,获得30
10秒前
科研不了一点完成签到,获得积分10
11秒前
11秒前
12秒前
果实发布了新的文献求助10
12秒前
An.发布了新的文献求助10
13秒前
13秒前
14秒前
淡淡的白羊完成签到 ,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471950
求助须知:如何正确求助?哪些是违规求助? 4574342
关于积分的说明 14345719
捐赠科研通 4501694
什么是DOI,文献DOI怎么找? 2466457
邀请新用户注册赠送积分活动 1454550
关于科研通互助平台的介绍 1429124