Decoupled Contrastive Multi-View Clustering with High-Order Random Walks

随机游动 聚类分析 订单(交换) 计算机科学 统计物理学 数学 人工智能 统计 物理 经济 财务
作者
Yiding Lu,Yijie Lin,Mouxing Yang,Dezhong Peng,Peng Hu,Xi Peng
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 14193-14201 被引量:17
标识
DOI:10.1609/aaai.v38i13.29330
摘要

In recent, some robust contrastive multi-view clustering (MvC) methods have been proposed, which construct data pairs from neighborhoods to alleviate the false negative issue, i.e., some intra-cluster samples are wrongly treated as negative pairs. Although promising performance has been achieved by these methods, the false negative issue is still far from addressed and the false positive issue emerges because all in- and out-of-neighborhood samples are simply treated as positive and negative, respectively. To address the issues, we propose a novel robust method, dubbed decoupled contrastive multi-view clustering with high-order random walks (DIVIDE). In brief, DIVIDE leverages random walks to progressively identify data pairs in a global instead of local manner. As a result, DIVIDE could identify in-neighborhood negatives and out-of-neighborhood positives. Moreover, DIVIDE embraces a novel MvC architecture to perform inter- and intra-view contrastive learning in different embedding spaces, thus boosting clustering performance and embracing the robustness against missing views. To verify the efficacy of DIVIDE, we carry out extensive experiments on four benchmark datasets comparing with nine state-of-the-art MvC methods in both complete and incomplete MvC settings. The code is released on https://github.com/XLearning-SCU/2024-AAAI-DIVIDE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ygy发布了新的文献求助30
1秒前
郭柳含发布了新的文献求助10
2秒前
hahahaman发布了新的文献求助10
2秒前
熊熊发布了新的文献求助10
3秒前
4秒前
ixueyi发布了新的文献求助10
4秒前
Dr大壮完成签到,获得积分10
4秒前
humblelucas发布了新的文献求助10
8秒前
9秒前
帅气的伯云完成签到,获得积分20
9秒前
搜集达人应助hahahaman采纳,获得10
9秒前
houhou发布了新的文献求助30
10秒前
12秒前
天天快乐应助sunshine采纳,获得10
13秒前
orixero应助manve采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
19秒前
zhukun完成签到,获得积分10
19秒前
19秒前
20秒前
shiizii应助liangdayi357采纳,获得10
20秒前
三七发布了新的文献求助10
20秒前
丘比特应助Steven采纳,获得10
20秒前
21秒前
22秒前
平常狗发布了新的文献求助10
23秒前
希望天下0贩的0应助juanjie采纳,获得10
24秒前
ztl17523发布了新的文献求助10
24秒前
段段发布了新的文献求助20
25秒前
Timon完成签到,获得积分10
25秒前
25秒前
hll发布了新的文献求助10
25秒前
27秒前
解语花完成签到,获得积分10
29秒前
29秒前
爱笑的醉卉完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026354
求助须知:如何正确求助?哪些是违规求助? 3566014
关于积分的说明 11350975
捐赠科研通 3297178
什么是DOI,文献DOI怎么找? 1816005
邀请新用户注册赠送积分活动 890327
科研通“疑难数据库(出版商)”最低求助积分说明 813520