SKHASH: A Python Package for Computing Earthquake Focal Mechanisms

Python(编程语言) 地质学 地震学 计算机科学 程序设计语言 计算机图形学(图像)
作者
Robert J. Skoumal,Jeanne L. Hardebeck,Peter M. Shearer
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:95 (4): 2519-2526 被引量:4
标识
DOI:10.1785/0220230329
摘要

Abstract We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible input formats and allows users to take advantage of recent advances in constraining focal mechanisms for small magnitude or poorly recorded earthquakes. The 3D locations of earthquakes and the velocity models used are varied when finding acceptable solutions. As a result, source–receiver azimuths are reflective of errors from the earthquake locations and velocity models, in addition to the takeoff angles. Users can consider weighted P-wave first-motion polarities derived from traditional or machine-learning picks, cross-correlation consensus, and/or imputation techniques using SKHASH. Focal mechanism solutions can also be further constrained using traditional, machine learning, and/or cross-correlation consensus S/P amplitude ratios. With improved reporting of individual and collective P polarity and S/P amplitude misfits, users can better evaluate the success of the solutions and the quality of the measurements. The reporting also makes it easier to identify potential issues with metadata, including incorrectly reported station polarity reversals. In addition, by leveraging vectorized operations, taking advantage of an efficient backend Python C Application Programming Interface, and the use of a parallel environment, the Python SKHASH routine may compute mechanisms quicker than the HASH routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
疯狂的宛凝完成签到,获得积分10
3秒前
4秒前
6秒前
9秒前
小马甲应助饱满的书萱采纳,获得10
9秒前
tw007007完成签到,获得积分10
11秒前
micett完成签到,获得积分10
11秒前
dennisysz发布了新的文献求助10
15秒前
二橦完成签到,获得积分10
15秒前
16秒前
shuoshuo完成签到 ,获得积分10
18秒前
所所应助kiwi采纳,获得10
19秒前
20秒前
22秒前
tdtk发布了新的文献求助10
26秒前
罗布林卡发布了新的文献求助10
31秒前
41秒前
明亮的青旋完成签到 ,获得积分10
41秒前
42秒前
wanci应助tianqing采纳,获得10
42秒前
救驾来迟发布了新的文献求助10
43秒前
大家好完成签到 ,获得积分10
43秒前
初妍完成签到,获得积分20
44秒前
45秒前
47秒前
Panther完成签到,获得积分10
50秒前
顺风顺水的薇容完成签到 ,获得积分10
50秒前
dennisysz发布了新的文献求助10
51秒前
啊实打实大师完成签到,获得积分10
52秒前
Gloria发布了新的文献求助10
52秒前
55秒前
参上完成签到,获得积分10
56秒前
毛毛完成签到,获得积分10
58秒前
利奈唑胺完成签到,获得积分10
58秒前
1分钟前
小美女发布了新的文献求助30
1分钟前
1分钟前
锵崽锵崽发布了新的文献求助10
1分钟前
moon完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133