Use of artificial intelligence in critical care: opportunities and obstacles

工作流程 形势意识 医疗保健 临床决策支持系统 人口 医学 计算机科学 人工智能 数据科学 决策支持系统 环境卫生 数据库 航空航天工程 工程类 经济 经济增长
作者
Michael R. Pinsky,Armando Bedoya,Azra Bihorac,Leo Anthony Celi,Matthew M. Churpek,Nicoleta J. Economou‐Zavlanos,Paul Elbers,Suchi Saria,Vincent Liu,Patrick G. Lyons,Benjamin Shickel,Patrick Toral,David W. Tscholl,Gilles Clermont
出处
期刊:Critical Care [BioMed Central]
卷期号:28 (1) 被引量:9
标识
DOI:10.1186/s13054-024-04860-z
摘要

Abstract Background Perhaps nowhere else in the healthcare system than in the intensive care unit environment are the challenges to create useful models with direct time-critical clinical applications more relevant and the obstacles to achieving those goals more massive. Machine learning-based artificial intelligence (AI) techniques to define states and predict future events are commonplace activities of modern life. However, their penetration into acute care medicine has been slow, stuttering and uneven. Major obstacles to widespread effective application of AI approaches to the real-time care of the critically ill patient exist and need to be addressed. Main body Clinical decision support systems (CDSSs) in acute and critical care environments support clinicians, not replace them at the bedside. As will be discussed in this review, the reasons are many and include the immaturity of AI-based systems to have situational awareness, the fundamental bias in many large databases that do not reflect the target population of patient being treated making fairness an important issue to address and technical barriers to the timely access to valid data and its display in a fashion useful for clinical workflow. The inherent “black-box” nature of many predictive algorithms and CDSS makes trustworthiness and acceptance by the medical community difficult. Logistically, collating and curating in real-time multidimensional data streams of various sources needed to inform the algorithms and ultimately display relevant clinical decisions support format that adapt to individual patient responses and signatures represent the efferent limb of these systems and is often ignored during initial validation efforts. Similarly, legal and commercial barriers to the access to many existing clinical databases limit studies to address fairness and generalizability of predictive models and management tools. Conclusions AI-based CDSS are evolving and are here to stay. It is our obligation to be good shepherds of their use and further development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsrlbc完成签到,获得积分10
2秒前
西安浴日光能赵炜完成签到,获得积分10
2秒前
hhh2018687完成签到,获得积分10
5秒前
obaica完成签到,获得积分10
6秒前
细胞呵呵完成签到 ,获得积分10
9秒前
张若旸完成签到 ,获得积分10
9秒前
11秒前
ng完成签到 ,获得积分10
11秒前
小李子完成签到,获得积分10
11秒前
帅气的沧海完成签到 ,获得积分10
13秒前
任性的思远完成签到 ,获得积分10
17秒前
科研通AI5应助研友_ZlvpxL采纳,获得10
21秒前
zz完成签到 ,获得积分10
23秒前
沉静皮带完成签到 ,获得积分10
25秒前
29秒前
jfc完成签到,获得积分10
31秒前
xioabu完成签到,获得积分10
31秒前
涛1完成签到 ,获得积分10
33秒前
xioabu发布了新的文献求助10
33秒前
pangkuan发布了新的文献求助10
43秒前
胖胖橘完成签到 ,获得积分10
49秒前
digger2023完成签到 ,获得积分10
51秒前
忧虑的静柏完成签到 ,获得积分10
52秒前
zhenzhen完成签到,获得积分10
1分钟前
火星人完成签到 ,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
1分钟前
chengchenwu发布了新的文献求助10
1分钟前
二世小卒完成签到 ,获得积分10
1分钟前
1分钟前
eershi完成签到,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
糊涂的剑发布了新的文献求助10
1分钟前
chengchenwu完成签到,获得积分10
1分钟前
科研通AI5应助糊涂的剑采纳,获得10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
潘fujun完成签到 ,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
css发布了新的文献求助10
1分钟前
妖孽的二狗完成签到 ,获得积分10
1分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418933
捐赠科研通 3081206
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539