Tracking habitat use of migratory birds in a human‐dominated stopover site using deep learning and acoustic indices

作者
Yuxuan Duan,Shizheng Wang,Ranxing Cao,Jiawei Feng,Jianping Ge,Tianming Wang
出处
期刊:Ecosphere [Wiley]
卷期号:16 (12)
标识
DOI:10.1002/ecs2.70493
摘要

Abstract Bird migration is a fascinating behavioral phenomenon on earth, with annual movements along migratory routes forming complex migration networks. Stopovers, which serve as fuel stations for migratory birds, are critical to the success of long‐distance migrations. However, there is growing concern that stopover habitat has been converted and degraded due to intense human disturbances, which severely threaten migratory populations. New remote automated approaches for collecting data, such as passive acoustic monitoring (PAM) technology, provide a promising avenue for the continuous measurement of vocally active species. In this study, we applied PAM to monitor migrating birds in the stopovers of the Jingxin wetland in China, aiming to explore the activity and habitat use of migratory species through soundscape and deep learning approaches. We collected acoustic data from October 16, 2022, to December 15, 2022 (autumn migration season) and from February 19, 2023, to April 28, 2023 (spring migration season) across three habitats: degraded wetland, farmland, and forest. We applied multilabel classification via the ResNet50 convolutional neural network (CNN) to identify a total of 2.45 million 10‐s audio clips collected. Our results revealed that the 1–2‐kHz vocal signals of Anatidae dominated the soundscapes of the two migratory periods. Two automated measures—compound acoustic indices and a CNN‐derived migratory bird activity—reflected avian habitat use gradients and diel patterns in two migratory periods, with the compound indices model explaining 52% and 47% of the variation in migratory intensity, respectively. Furthermore, farmland is the most intensively utilized habitat by migratory species because of the food resources available. This novel use of combining reproducible acoustic data with deep learning can be used to track the temporal changes and spatial distribution of avian migrants effectively and highlights the importance of agricultural ecosystem management at dominated‐human stopover sites. Managers should consider using cost‐effective acoustic sensors for long‐term monitoring of avian movements and for refining conservation practices in a rapidly changing world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗霄山发布了新的文献求助10
1秒前
温暖的鹏飞完成签到,获得积分10
1秒前
2秒前
ZHH发布了新的文献求助10
2秒前
大头娃娃发布了新的文献求助10
2秒前
3秒前
lim完成签到,获得积分10
3秒前
善学以致用应助刘壮采纳,获得10
5秒前
JamesPei应助海棠采纳,获得30
5秒前
5秒前
七七七发布了新的文献求助10
6秒前
Hello_Alina完成签到,获得积分10
6秒前
小蘑菇应助深情的雪糕采纳,获得10
7秒前
深情安青应助欣于所遇采纳,获得10
7秒前
kd发布了新的文献求助10
7秒前
8秒前
小天使完成签到,获得积分10
9秒前
浮游应助摸虞芥雏子采纳,获得10
10秒前
10秒前
侯zijun发布了新的文献求助10
11秒前
冷酷莫言发布了新的文献求助10
11秒前
jyy应助默默的惜灵采纳,获得10
11秒前
WFZ完成签到,获得积分10
11秒前
TiO太阳发布了新的文献求助10
12秒前
星辰大海应助lan采纳,获得10
12秒前
王佳慧发布了新的文献求助10
13秒前
14秒前
15秒前
李健的小迷弟应助范范采纳,获得30
15秒前
叮咚发布了新的文献求助10
15秒前
纯真电源完成签到,获得积分20
16秒前
orixero应助aaa采纳,获得10
16秒前
16秒前
冷酷莫言完成签到,获得积分10
16秒前
17秒前
ren完成签到 ,获得积分10
17秒前
18秒前
号6666完成签到,获得积分10
18秒前
嘉佳伽完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507193
求助须知:如何正确求助?哪些是违规求助? 4602555
关于积分的说明 14482048
捐赠科研通 4536567
什么是DOI,文献DOI怎么找? 2486259
邀请新用户注册赠送积分活动 1468833
关于科研通互助平台的介绍 1441292