Sodium-ion batteries (SIBs) have arisen as a potential alternative to lithium-ion batteries (LIBs) as a result of the abundant availability of sodium resources at low production costs, making them in line with the United Nations Sustainable Development Goals (SDGs) for affordable and clean energy (Goal 7). The current review intends to comprehensively analyse the various modification techniques deployed to improve the performance of cathode materials for SIBs, including element doping, surface coating, and morphological control. These techniques have demonstrated prominent improvements in electrochemical properties, such as specific capacity, cycling stability, and overall efficiency. The findings indicate that element doping can optimise electronic and ionic conductivity, while surface coatings can enhance stability in addition to mitigating side reactions throughout cycling. Furthermore, morphological control is an intricate technique to facilitate efficient ion diffusion and boost the use of active materials. Statistically, the Cr-doped NaV1−xCrxPO4F achieves a reversible capacity of 83.3 mAh/g with a charge–discharge performance of 90.3%. The sodium iron–nickel hexacyanoferrate presents a discharge capacity of 106 mAh/g and a Coulombic efficiency of 97%, with 96% capacity retention over 100 cycles. Furthermore, the zero-strain cathode Na4Fe7(PO4)6 maintains about 100% capacity retention after 1000 cycles, with only a 0.24% change in unit-cell volume throughout sodiation/desodiation. Notwithstanding these merits, this review ascertains the importance of ongoing research to resolve the associated challenges and unlock the full potential of SIB technology, paving the way for sustainable and efficient energy storage solutions that would aid the conversion into greener energy systems.