Context-aware attention layers coupled with optimal transport domain adaptation and multimodal fusion methods for recognizing dementia from spontaneous speech

计算机科学 背景(考古学) 平滑的 适应(眼睛) 人工智能 语音识别 模式 机器学习 计算机视觉 社会科学 生物 光学 物理 社会学 古生物学
作者
Loukas Ilias,Dimitris Askounis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2305.16406
摘要

Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia. Although many studies have been proposed targeting at diagnosing dementia through spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose multimodal methods, train separately language and acoustic models, employ majority-vote approaches, and concatenate the representations of the different modalities either at the input level, i.e., early fusion, or during training. Also, some of them employ self-attention layers, which calculate the dependencies between representations without considering the contextual information. In addition, no prior work has taken into consideration the model calibration. To address these limitations, we propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions. First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create in this way an image per audio file consisting of three channels. Next, we pass each transcript and image through BERT and DeiT models respectively. After that, context-based self-attention layers, self-attention layers with a gate model, and optimal transport domain adaptation methods are employed for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing the self and cross-attention features. For taking into account the model calibration, we apply label smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS and ADReSSo Challenge datasets indicate the efficacy of our introduced approaches over existing research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25% and 91.06% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yingying完成签到 ,获得积分10
刚刚
wxiao完成签到,获得积分10
2秒前
xiaohongmao发布了新的文献求助10
3秒前
neuarcher完成签到,获得积分0
3秒前
Mr.Su完成签到 ,获得积分10
4秒前
666完成签到,获得积分10
6秒前
一点完成签到,获得积分10
6秒前
xiaohongmao完成签到,获得积分10
8秒前
白茶完成签到 ,获得积分10
8秒前
哎呀呀完成签到,获得积分10
8秒前
852应助小可采纳,获得10
8秒前
Splaink完成签到 ,获得积分10
9秒前
负责灵萱完成签到 ,获得积分10
9秒前
nannan完成签到 ,获得积分10
10秒前
ATYS完成签到,获得积分10
12秒前
爱尚Coco完成签到,获得积分10
12秒前
杨文志完成签到,获得积分10
13秒前
Dobronx03完成签到,获得积分10
14秒前
潇湘学术完成签到,获得积分10
14秒前
WTX完成签到,获得积分10
16秒前
和谐的夏岚完成签到 ,获得积分10
16秒前
aaa完成签到,获得积分10
17秒前
fyjlfy完成签到 ,获得积分10
18秒前
沙克几十块完成签到,获得积分10
20秒前
21秒前
liyan完成签到 ,获得积分10
22秒前
ommphey完成签到 ,获得积分10
24秒前
程程发布了新的文献求助10
24秒前
figure完成签到 ,获得积分10
24秒前
清脆愫完成签到 ,获得积分10
25秒前
传奇3应助小火车采纳,获得10
27秒前
drleslie完成签到 ,获得积分10
27秒前
hhm完成签到,获得积分10
29秒前
29秒前
斑马完成签到,获得积分10
31秒前
细心的代天完成签到 ,获得积分10
33秒前
Leofar完成签到 ,获得积分10
33秒前
那个笨笨完成签到,获得积分10
33秒前
开放又亦完成签到 ,获得积分0
33秒前
满天星辰独览完成签到 ,获得积分10
33秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362901
关于积分的说明 10419096
捐赠科研通 3081220
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814837
科研通“疑难数据库(出版商)”最低求助积分说明 768545