Position-dependent milling process monitoring and surface roughness prediction for complex thin-walled blade component

刀(考古) 职位(财务) 表面粗糙度 组分(热力学) 过程(计算) 表面光洁度 工程类 计算机科学 声学 机械工程 材料科学 物理 操作系统 复合材料 经济 热力学 财务
作者
Zequan Yao,Jingyuan Shen,Ming Wu,Dinghua Zhang,Ming Luo
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110439-110439 被引量:37
标识
DOI:10.1016/j.ymssp.2023.110439
摘要

Freeform surface parts, such as blades, exhibit complex structures and excellent aerodynamic performance, making them widely utilized in aerospace propulsion systems. However, monitoring and ensuring surface quality during the milling process of such components is challenging, leading to high scrap rates and unguaranteed processing efficiency. To address these issues, this paper investigated the milling process monitoring and position-dependent surface roughness prediction for the thin-walled blade with the material of Ti-6Al-4 V. The monitored blade-root acceleration signal was utilized to develop a discrete spatial vibration model based on the machining characteristics of the blade. This involved using Fourier transform and inverse techniques to combine the frequency response functions and cutting force for acceleration calculation, which was then compared to measured values to validate the model’s monitorability. Aiming at the surface roughness prediction, a predictive method for the entire machined surface was proposed, consisting of signal pre-processing, feature extraction and selection, and construction of extreme learning machine (ELM) model. Time-domain, frequency-domain, and time–frequency-domain methods were adopted for feature extraction. To enhance the generalization ability and accuracy of the predictive model, the maximal information coefficient was employed for correlation analysis, resulting in the selection of 12 features as input for the ELM-based surface roughness prediction system. Comparison of the measured and predicted surface roughness results revealed that all errors were less than 14%, with an average error of only 6.70%, demonstrating the validity and reliability of the prediction method. Notably, the proposed monitoring method does not interfere with the milling process and enables prediction of surface roughness at arbitrary positions on the entire surface during variable-parameter processing of freeform surface parts, thereby improving the quality and precision of the machined surface. The potential application of this paper lies in the final inspection of defects in industrial products and reducing the service risk of non-conforming parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
317发布了新的文献求助10
刚刚
安静翎完成签到,获得积分10
刚刚
徐智秀完成签到,获得积分10
刚刚
五月发布了新的文献求助10
刚刚
1秒前
Fancy完成签到,获得积分10
1秒前
2秒前
Synthen发布了新的文献求助10
2秒前
完美世界应助CYF采纳,获得10
3秒前
我是老大应助CYF采纳,获得10
3秒前
3秒前
4秒前
无花果应助十年小橘采纳,获得10
4秒前
4秒前
5秒前
dd完成签到,获得积分20
5秒前
科目三应助ida采纳,获得30
5秒前
SciGPT应助11采纳,获得10
5秒前
JamesPei应助实验室梅梅采纳,获得10
6秒前
6秒前
7秒前
leeteukxx发布了新的文献求助30
7秒前
今后应助317采纳,获得10
7秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
8秒前
科研通AI6应助飘逸的达采纳,获得30
8秒前
量子星尘发布了新的文献求助10
8秒前
Fancy发布了新的文献求助10
9秒前
9秒前
小郭发布了新的文献求助10
9秒前
CHEN_ZE_LU完成签到,获得积分20
9秒前
俊逸芸遥完成签到,获得积分10
9秒前
yhq完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
书双完成签到,获得积分10
11秒前
Aurora完成签到,获得积分10
11秒前
柯柯发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906