Towards interpreting machine learning models for predicting soil moisture droughts

环境科学 干旱 植被(病理学) 潜热 含水量 随机森林 特征(语言学) 气候学 计算机科学 机器学习 气象学 地理 地质学 医学 古生物学 语言学 哲学 岩土工程 病理
作者
Feini Huang,Yongkun Zhang,Ye Zhang,Vahid Nourani,Qingliang Li,Lu Li,Wei Shangguan
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:18 (7): 074002-074002 被引量:15
标识
DOI:10.1088/1748-9326/acdbe0
摘要

Abstract Determination of the dominant factors which affect soil moisture (SM) predictions for drought analysis is an essential step to assess the reliability of the prediction results. However, artificial intelligence (AI) based drought modelling only provides prediction results without the physical interpretation of the models. Here, we propose an explainable AI (XAI) framework to reveal the modelling of SM drought events. Random forest based site-specific SM prediction models were developed using the data from 30 sites, covering 8 vegetation types. The unity of multiply XAI tools was applied to interpret the site-models both globally (generally) and locally. Globally, the models were interpreted using two methods: permutation importance and accumulated local effect (ALE). On the other hand, for each drought event, the models were interpreted locally via Shapley additive explanations (SHAP), local interpretable model-agnostic explanation (LIME) and individual conditional expectation (ICE) methods. Globally, the dominant features for SM predictions were identified as soil temperature, atmospheric aridity, time variables and latent heat flux. But through local interpretations of the drought events, SM showed a greater reliance on soil temperature, atmospheric aridity and latent heat flux at grass sites, with higher correlation to the time-dependent parameters at the sites located in forests. The temporal variation of the feature which effects the drought events was also demonstrated. The interpretation could shed light on how predictions are made and could promote the application of AI techniques in drought prediction, which may be useful for irrigation and water resource management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪静芙发布了新的文献求助10
1秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
萧雨墨发布了新的文献求助30
3秒前
LMH发布了新的文献求助10
3秒前
想吃脆脆发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
小蘑菇应助南方白芝麻胡采纳,获得10
5秒前
哈哈完成签到,获得积分10
6秒前
左欣岳完成签到 ,获得积分10
6秒前
pluto应助橘井采纳,获得10
6秒前
科研通AI6应助闪闪静芙采纳,获得10
6秒前
8秒前
Owen应助BCKT采纳,获得10
8秒前
10秒前
xxhh33完成签到 ,获得积分10
11秒前
大模型应助YJ采纳,获得10
11秒前
lilili完成签到,获得积分10
12秒前
16秒前
18秒前
三三四完成签到,获得积分10
18秒前
Bellona完成签到,获得积分10
18秒前
蝎子莱莱发布了新的文献求助30
19秒前
20秒前
20秒前
21秒前
科研通AI6应助hn_zhx采纳,获得10
21秒前
研友_VZG7GZ应助Bellona采纳,获得10
23秒前
小李发布了新的文献求助10
23秒前
zxy完成签到,获得积分10
23秒前
忧伤的冰彤完成签到,获得积分10
24秒前
浮游应助科研通管家采纳,获得10
25秒前
yznfly应助科研通管家采纳,获得20
25秒前
核桃应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得30
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
apiaji应助科研通管家采纳,获得20
26秒前
Hello应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532595
求助须知:如何正确求助?哪些是违规求助? 4621358
关于积分的说明 14577575
捐赠科研通 4561156
什么是DOI,文献DOI怎么找? 2499216
邀请新用户注册赠送积分活动 1479159
关于科研通互助平台的介绍 1450389