An attention 3DUNET and visual geometry group-19 based deep neural network for brain tumor segmentation and classification from MRI

人工智能 分割 模式识别(心理学) 计算机科学 预处理器 卷积神经网络 特征提取 特征(语言学) 深度学习 人工神经网络 特征选择 图像分割 计算机视觉 哲学 语言学
作者
Parvathy Jyothi,S. Dhanasekaran
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/07391102.2023.2283164
摘要

There has been an abrupt increase in brain tumor (BT) related medical cases during the past ten years. The tenth most typical type of tumor affecting millions of people is the BT. The cure rate can, however, rise if it is found early. When evaluating BT diagnosis and treatment options, MRI is a crucial tool. However, segmenting the tumors from magnetic resonance (MR) images is complex. The advancement of deep learning (DL) has led to the development of numerous automatic segmentation and classification approaches. However, most need improvement since they are limited to 2D images. So, this article proposes a novel and optimal DL system for segmenting and classifying the BTs from 3D brain MR images. Preprocessing, segmentation, feature extraction, feature selection, and tumor classification are the main phases of the proposed work. Preprocessing, such as noise removal, is performed on the collected brain MR images using bilateral filtering. The tumor segmentation uses spatial and channel attention-based three-dimensional u-shaped network (SC3DUNet) to segment the tumor lesions from the preprocessed data. After that, the feature extraction is done based on dilated convolution-based visual geometry group-19 (DCVGG-19), making the classification task more manageable. The optimal features are selected from the extracted feature sets using diagonal linear uniform and tangent flight included butterfly optimization algorithm. Finally, the proposed system applies an optimal hyperparameters-based deep neural network to classify the tumor classes. The experiments conducted on the BraTS2020 dataset show that the suggested method can segment tumors and categorize them more accurately than the existing state-of-the-art mechanisms.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
英雷完成签到,获得积分10
5秒前
nszdrc发布了新的文献求助10
6秒前
元炫发布了新的文献求助10
8秒前
9秒前
yy完成签到,获得积分10
10秒前
华仔应助小台采纳,获得10
11秒前
11秒前
lsx发布了新的文献求助10
12秒前
asdfqwer应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得30
12秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
13秒前
方大完成签到,获得积分10
14秒前
18秒前
Cholly发布了新的文献求助10
18秒前
点心发布了新的文献求助10
19秒前
薯愿完成签到,获得积分10
19秒前
郑南鹏完成签到,获得积分10
19秒前
sc95驳回了赘婿应助
20秒前
豆芽发布了新的文献求助10
21秒前
22秒前
26秒前
何小盒完成签到,获得积分10
27秒前
coolru发布了新的文献求助10
28秒前
nannan发布了新的文献求助10
32秒前
小二郎应助坚定惊蛰采纳,获得10
36秒前
传奇3应助元炫采纳,获得10
36秒前
CodeCraft应助zzc采纳,获得10
38秒前
38秒前
坚定的芸完成签到,获得积分10
39秒前
sutharsons应助zhuhaot采纳,获得50
41秒前
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794649
求助须知:如何正确求助?哪些是违规求助? 3339446
关于积分的说明 10296040
捐赠科研通 3056142
什么是DOI,文献DOI怎么找? 1676904
邀请新用户注册赠送积分活动 804932
科研通“疑难数据库(出版商)”最低求助积分说明 762216