Early prediction of ventilator-associated pneumonia with machine learning models: A systematic review and meta-analysis of prediction model performance✰

医学 机器学习 荟萃分析 预测建模 呼吸机相关性肺炎 重症监护医学 肺炎 内科学 计算机科学
作者
Tuomas Frondelius,Irina Atkova,Jouko Miettunen,Jordi Rello,Gillian Vesty,Han Shi Jocelyn Chew,Miia Jansson
出处
期刊:European Journal of Internal Medicine [Elsevier BV]
被引量:25
标识
DOI:10.1016/j.ejim.2023.11.009
摘要

BackgroundMachine learning-based prediction models can catalog, classify, and correlate large amounts of multimodal data to aid clinicians at diagnostic, prognostic, and therapeutic levels. Early prediction of ventilator-associated pneumonia (VAP) may accelerate the diagnosis and guide preventive interventions. The performance of a variety of machine learning-based prediction models were analyzed among adults undergoing invasive mechanical ventilation.MethodsThis systematic review and meta-analysis was conducted in accordance with the Cochrane Collaboration. Machine learning-based prediction models were identified from a search of nine multi-disciplinary databases. Two authors independently selected and extracted data using predefined criteria and data extraction forms. The predictive performance, the interpretability, the technological readiness level, and the risk of bias of the included studies were evaluated.ResultsFinal analysis included 10 static prediction models using supervised learning. The pooled area under the receiver operating characteristics curve, sensitivity, and specificity for VAP were 0.88 (95 % CI 0.82–0.94, I2 98.4 %), 0.72 (95 % CI 0.45–0.98, I2 97.4 %) and 0.90 (95 % CI 0.85–0.94, I2 97.9 %), respectively. All included studies had either a high or unclear risk of bias without significant improvements in applicability. The care-related risk factors for the best performing models were the duration of mechanical ventilation, the length of ICU stay, blood transfusion, nutrition strategy, and the presence of antibiotics.ConclusionA variety of the prediction models, prediction intervals, and prediction windows were identified to facilitate timely diagnosis. In addition, care-related risk factors susceptible for preventive interventions were identified. In future, there is a need for dynamic machine learning models using time-depended predictors in conjunction with feature importance of the models to predict real-time risk of VAP and related outcomes to optimize bundled care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的惜筠应助赵阳采纳,获得10
1秒前
SciGPT应助谨慎不二采纳,获得10
1秒前
Wjk完成签到,获得积分10
3秒前
lixia完成签到 ,获得积分10
3秒前
4秒前
洁净的惜筠应助葭月十七采纳,获得10
5秒前
5秒前
6秒前
小罗发布了新的文献求助10
6秒前
看风景的小熊应助最专业采纳,获得10
7秒前
李爱国应助TCA循环采纳,获得30
7秒前
深情安青应助苌苌采纳,获得10
8秒前
孙燕应助你好采纳,获得10
9秒前
aa121599发布了新的文献求助10
9秒前
周小猪完成签到,获得积分10
9秒前
夏硕完成签到,获得积分10
10秒前
元昭诩应助summer采纳,获得10
11秒前
谨慎不二完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
Ava应助没有名字采纳,获得10
12秒前
JC完成签到,获得积分10
13秒前
14秒前
搜集达人应助忧郁寒荷采纳,获得10
14秒前
anton完成签到,获得积分20
14秒前
14秒前
Owen应助收手吧大哥采纳,获得10
14秒前
Mr_W发布了新的文献求助10
15秒前
两米七发布了新的文献求助20
15秒前
16秒前
谨慎不二发布了新的文献求助10
16秒前
17秒前
18秒前
Lu发布了新的文献求助10
18秒前
研友_ana完成签到,获得积分10
19秒前
19秒前
Y.fan发布了新的文献求助10
20秒前
hahha发布了新的文献求助10
20秒前
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109353
求助须知:如何正确求助?哪些是违规求助? 3647658
关于积分的说明 11554402
捐赠科研通 3353570
什么是DOI,文献DOI怎么找? 1842392
邀请新用户注册赠送积分活动 908625
科研通“疑难数据库(出版商)”最低求助积分说明 825696