Wearable Recognition System for Complex Motions Based on Hybrid Deep‐Learning‐Enhanced Strain Sensors

可穿戴计算机 人工智能 计算机科学 深度学习 卷积神经网络 可穿戴技术 规范化(社会学) 人工神经网络 理论(学习稳定性) 过程(计算) 一致性(知识库) 机器学习 模式识别(心理学) 嵌入式系统 人类学 社会学 操作系统
作者
Meng Nie,Pengfan Chen,Lei Wen,Jinwen Fan,Qian Zhang,Kuibo Yin,Guangbin Dou
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:5 (11) 被引量:6
标识
DOI:10.1002/aisy.202300222
摘要

Wearable recognition systems based on flexible electronics present immense potential for applications in human–machine interfaces, medical care, soft robots, etc. However, they experience challenges in terms of the nonideal consistency and stability of flexible sensors, which are responsible for detecting physical signals from human motions. These challenges hinder the improvement of recognition precision and capability in the wearable systems. Furthermore, the computational consumption for the recognition increases as more sensors are used to extensively gather information for distinguishing between complex motions. Herein, a wearable recognition system based on deep‐learning‐enhanced strain sensors for distinguishing between the complex motions of the human body is presented. A strain sensor based on peak–valley microstructures is fabricated and packaged to improve consistency and stability. Moreover, a lightweight hybrid convolutional neural network long short‐term memory model is designed to lower the computational costs of the deep learning process. In particular, by designing Butterworth filtering and Z ‐score normalization algorithms, the error in feature extraction caused by sensor signal fluctuation is reduced, thereby improving the recognition accuracy of the proposed wearable system to 95.72% for seven gait motions and 100% for four different continuous series of Tai Chi forms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FZUer完成签到,获得积分10
1秒前
小宝完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
gujian完成签到 ,获得积分10
3秒前
BinSir完成签到 ,获得积分10
4秒前
4秒前
heyseere完成签到,获得积分10
4秒前
依依完成签到,获得积分10
5秒前
岁月如歌完成签到 ,获得积分0
5秒前
6秒前
lemon完成签到 ,获得积分10
6秒前
复杂的沛儿完成签到 ,获得积分10
6秒前
啊闻完成签到 ,获得积分10
6秒前
ning_yang完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
木瓜小五哥完成签到,获得积分10
8秒前
8秒前
king完成签到 ,获得积分10
8秒前
8秒前
8秒前
luckyhan完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
巅峰囚冰完成签到,获得积分10
10秒前
Youth完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066805
求助须知:如何正确求助?哪些是违规求助? 4288731
关于积分的说明 13360444
捐赠科研通 4108126
什么是DOI,文献DOI怎么找? 2249514
邀请新用户注册赠送积分活动 1254960
关于科研通互助平台的介绍 1187429