Wearable Recognition System for Complex Motions Based on Hybrid Deep‐Learning‐Enhanced Strain Sensors

可穿戴计算机 人工智能 计算机科学 深度学习 卷积神经网络 可穿戴技术 规范化(社会学) 人工神经网络 理论(学习稳定性) 过程(计算) 一致性(知识库) 机器学习 模式识别(心理学) 嵌入式系统 社会学 人类学 操作系统
作者
Meng Nie,Pengfan Chen,Lei Wen,Jie Fan,Qian Zhang,Kuibo Yin,Guangbin Dou
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:5 (11) 被引量:1
标识
DOI:10.1002/aisy.202300222
摘要

Wearable recognition systems based on flexible electronics present immense potential for applications in human–machine interfaces, medical care, soft robots, etc. However, they experience challenges in terms of the nonideal consistency and stability of flexible sensors, which are responsible for detecting physical signals from human motions. These challenges hinder the improvement of recognition precision and capability in the wearable systems. Furthermore, the computational consumption for the recognition increases as more sensors are used to extensively gather information for distinguishing between complex motions. Herein, a wearable recognition system based on deep‐learning‐enhanced strain sensors for distinguishing between the complex motions of the human body is presented. A strain sensor based on peak–valley microstructures is fabricated and packaged to improve consistency and stability. Moreover, a lightweight hybrid convolutional neural network long short‐term memory model is designed to lower the computational costs of the deep learning process. In particular, by designing Butterworth filtering and Z ‐score normalization algorithms, the error in feature extraction caused by sensor signal fluctuation is reduced, thereby improving the recognition accuracy of the proposed wearable system to 95.72% for seven gait motions and 100% for four different continuous series of Tai Chi forms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daxiooo11发布了新的文献求助10
1秒前
Hmc完成签到 ,获得积分10
1秒前
自信雨安发布了新的文献求助10
2秒前
2秒前
天涯明月不熬夜完成签到,获得积分10
2秒前
搜集达人应助best采纳,获得30
3秒前
幸福咖啡完成签到,获得积分20
3秒前
高凯璇发布了新的文献求助10
3秒前
育三杯清栀完成签到 ,获得积分10
3秒前
coolkid应助跳跃的若灵采纳,获得10
4秒前
樊舒豪发布了新的文献求助10
4秒前
hello完成签到,获得积分10
4秒前
4秒前
璀璨c发布了新的文献求助10
4秒前
北北完成签到 ,获得积分10
4秒前
读书人完成签到,获得积分10
5秒前
5秒前
木木发布了新的文献求助10
5秒前
6秒前
YYH发布了新的文献求助10
6秒前
糕糕关注了科研通微信公众号
9秒前
10秒前
10秒前
高凯璇完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
图南完成签到,获得积分10
11秒前
11秒前
科研副本完成签到,获得积分10
12秒前
duoduo完成签到,获得积分10
12秒前
芝芝椰奶冻完成签到 ,获得积分10
12秒前
你好发布了新的文献求助10
13秒前
13秒前
YYYY发布了新的文献求助10
15秒前
15秒前
15秒前
一指墨发布了新的文献求助10
16秒前
16秒前
Li发布了新的文献求助10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839133
求助须知:如何正确求助?哪些是违规求助? 3381599
关于积分的说明 10518877
捐赠科研通 3100943
什么是DOI,文献DOI怎么找? 1707880
邀请新用户注册赠送积分活动 821988
科研通“疑难数据库(出版商)”最低求助积分说明 773084