Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子完成签到,获得积分10
刚刚
wst完成签到,获得积分10
1秒前
2秒前
yzm发布了新的文献求助10
2秒前
ReadyToWork发布了新的文献求助10
3秒前
wst发布了新的文献求助10
3秒前
科研通AI5应助浪而而采纳,获得10
3秒前
5秒前
5秒前
此去经年完成签到 ,获得积分10
6秒前
刘秀完成签到 ,获得积分10
7秒前
小马甲应助wst采纳,获得10
8秒前
8秒前
bookgg完成签到 ,获得积分10
8秒前
科目三应助Hannahlee采纳,获得10
9秒前
勤奋凡之完成签到 ,获得积分10
9秒前
ReadyToWork完成签到,获得积分10
9秒前
9秒前
weirdog发布了新的文献求助10
10秒前
10秒前
倩Q完成签到,获得积分10
11秒前
浪而而完成签到,获得积分10
11秒前
12秒前
13秒前
未何发布了新的文献求助10
15秒前
打打应助123456杯可乐采纳,获得10
16秒前
汉堡包应助WFLLL采纳,获得10
16秒前
影子发布了新的文献求助10
16秒前
基因金完成签到,获得积分10
16秒前
yuan完成签到,获得积分20
17秒前
Sunday发布了新的文献求助10
17秒前
小二郎应助常泽洋122采纳,获得40
18秒前
19秒前
qq发布了新的文献求助10
20秒前
Owen应助居居侠采纳,获得10
20秒前
21秒前
22秒前
23秒前
芒果味猕猴桃完成签到,获得积分10
24秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845742
求助须知:如何正确求助?哪些是违规求助? 3388072
关于积分的说明 10551720
捐赠科研通 3108711
什么是DOI,文献DOI怎么找? 1713024
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774891