多物理
时域有限差分法
解算器
电磁场
计算机科学
人工神经网络
计算科学
计算电磁学
边值问题
热的
电磁学
物理
有限元法
人工智能
工程物理
光学
量子力学
气象学
热力学
程序设计语言
作者
Shutong Qi,Costas D. Sarris
标识
DOI:10.1109/ims37964.2023.10188015
摘要
We demonstrate a new approach to building multiphysics solvers, employing physics-informed neural networks (PINNs), through the example of coupled electromagnetic-thermal simulations. In this example, the well-known Finite-Difference Time-Domain (FDTD) method for electromagnetic field simulation is combined with a PINN, designed to replace a thermal solver. The PINN is trained in an unsupervised manner by implementing the heat equation and boundary conditions into the network. As a result, the cost of generating "ground truth" data is eliminated. Our work enables standalone electromagnetic simulators, like FDTD, to solve multiphysics problems accurately and efficiently.
科研通智能强力驱动
Strongly Powered by AbleSci AI