Federated Condition Generalization on Low-dose CT Reconstruction via Cross-domain Learning

一般化 计算机科学 人工智能 深度学习 噪音(视频) 医学影像学 领域(数学分析) 迭代重建 计算机视觉 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Shixuan Chen,Boxuan Cao,Yinda Du,Yaoduo Zhang,Ji He,Zhaoying Bian,Dong Zeng,Jianhua Ma
出处
期刊:Lecture Notes in Computer Science 卷期号:: 47-56 被引量:1
标识
DOI:10.1007/978-3-031-43898-1_5
摘要

The harmful radiation dose associated with CT imaging is a major concern because it can cause genetic diseases. Acquiring CT data at low radiation doses has become a pressing goal. Deep learning (DL)-based methods have proven to suppress noise-induced artifacts and promote image quality in low-dose CT imaging. However, it should be noted that most of the DL-based methods are constructed based on the CT data from a specific condition, i.e., specific imaging geometry and specific dose level. Then these methods might generalize poorly to the other conditions, i.e., different imaging geometries and other radiation doses, due to the big data heterogeneity. In this study, to address this issue, we propose a condition generalization method under a federated learning framework (FedCG) to reconstruct CT images on two conditions: three different dose levels and different sampling shcemes at three different geometries. Specifically, the proposed FedCG method leverages a cross-domain learning approach: individual-client sinogram learning and cross-client image reconstruction for condition generalization. In each individual client, the sinogram at each condition is processed similarly to that in the iRadonMAP. Then the CT images at each client are learned via a condition generalization network in the server which considers latent common characteristics in the CT images at all conditions and preserves the client-specific characteristics in each condition. Experiments show that the proposed FedCG outperforms the other competing methods on two imaging conditions in terms of qualitative and quantitative assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助李俊枫采纳,获得10
2秒前
2秒前
2秒前
温水完成签到 ,获得积分10
4秒前
年华发布了新的文献求助10
7秒前
平凡发布了新的文献求助10
7秒前
10秒前
13秒前
13秒前
月涵完成签到 ,获得积分10
15秒前
桐桐应助科研通管家采纳,获得10
16秒前
ttt应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
17秒前
追寻地坛发布了新的文献求助20
17秒前
英姑应助罗莹洁采纳,获得10
18秒前
大熊发布了新的文献求助10
19秒前
21秒前
unless完成签到,获得积分10
24秒前
yx完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
难过雨文发布了新的文献求助10
30秒前
英俊的铭应助追寻地坛采纳,获得10
30秒前
科研通AI5应助李俊枫采纳,获得10
32秒前
43秒前
suka完成签到,获得积分10
47秒前
一沙发布了新的文献求助10
47秒前
懒羊羊完成签到 ,获得积分10
47秒前
51秒前
有米饭没完成签到 ,获得积分10
52秒前
cyh完成签到,获得积分10
54秒前
55秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844708
求助须知:如何正确求助?哪些是违规求助? 3387106
关于积分的说明 10547501
捐赠科研通 3107704
什么是DOI,文献DOI怎么找? 1711967
邀请新用户注册赠送积分活动 824223
科研通“疑难数据库(出版商)”最低求助积分说明 774644