肠道菌群
毛螺菌科
混淆
瘤胃球菌
微粒
生物
动物科学
医学
免疫学
内科学
生态学
遗传学
16S核糖体RNA
厚壁菌
细菌
作者
Tao Qiu,Tianzi Zang,Qingbo Fang,Zhihu Xu,Yang Cao,Xiaohui Fan,Jun Li,Xiang Zeng,Yanting Li,Yiming Tu,Guoxing Li,Jinbing Bai,Jing Huang,Yanqun Liu
标识
DOI:10.1016/j.envpol.2023.122389
摘要
Particulate matter (PM) is an important component of air pollutants and is associated with various health risks. However, the impact of PM on toddlers' gut microbiota is rarely investigated. This study aimed to assess the cumulative and lagged effects of varying-sized PMs on toddlers' gut microbiota. We collected demographic information, stool samples, and exposure to PM from 36 toddlers aged 2-3 years. The toddlers were divided into warm season group and cooler season group according to the collection time of stool samples. The gut microbiota was processed and analyzed using 16S rRNA V3-V4 gene regions. The concentration of PM was calculated using China High Air Pollutants (CHAP) database. To assess the mixed effects of varying-sized PM, multiple-PM models were utilized. There were significant differences between the community composition, α- and β-diversity between two groups. In multiple-PM models, there was a significant effect of weight quantile sum (PM1, PM2.5, and PM10) on α-diversity indices. In weight quantile sum models, after adjusting for a priori confounders, we found a negative effect of weight quantile sum on Enterococcus (β = -0.134, 95% CI -0.263 to -0.006), positive effects of weight quantile sum on unclassified_f__Ruminococcaceae (β = 0.247, 95% CI 0.102 to 0.393), Ruminococcus_1 (β = 0.444, 95% CI 0.238 to 0.650), unclassified_f__Lachnospiraceae (β = 0.278, 95% CI 0.099 to 0.458), and Family_XIII_AD_3011_group (β = 0.254, 95% CI 0.086 to 0.422) in WSG and CSG. In lagged weight quantile sum models, the correlation between lag time PM levels and the gut microbiota showed seasonal trends, and weights of PM changed with lag periods. This is the first study to highlight that cumulative and lagged effects of PMs synergistically affect the diversities (α- and β-diversity) and abundance of the gut microbiota in toddlers. Further research is needed to explore the mediating mechanism of varying-sized PMs exposure on the gut microbiota in toddlers.
科研通智能强力驱动
Strongly Powered by AbleSci AI