亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A malicious network traffic detection model based on bidirectional temporal convolutional network with multi-head self-attention mechanism

计算机科学 过度拟合 深度学习 人工智能 交通分类 卷积神经网络 功能(生物学) 交叉熵 机器学习 数据挖掘 人工神经网络 最大熵原理 计算机网络 服务质量 进化生物学 生物
作者
Saihua Cai,Han Xu,Mingjie Liu,Zhilin Chen,Guofeng Zhang
出处
期刊:Computers & Security [Elsevier BV]
卷期号:136: 103580-103580 被引量:16
标识
DOI:10.1016/j.cose.2023.103580
摘要

The increasingly frequent network intrusions have brought serious impacts to the production and life, thus malicious network traffic detection has received more and more attention in recent years. However, the traditional rule matching-based and machine learning-based malicious network traffic detection methods have the problems of relying on human experience as well as low detection efficiency. The continuous development of deep learning technology provides new ideas to solve malicious network traffic detection, and the deep learning models are also widely used in the field of malicious network traffic detection. Compared with other deep learning models, bidirectional temporal convolutional network (BiTCN) has achieved better detection results due to its ability to obtain bidirectional semantic features of network traffic, but it does not consider the different meanings as well as different importance of different subsequence segments in network traffic sequences; In addition, the loss function used in BiTCN is the negative log likelihood function, which may lead to overfitting problems when facing multi-classification problems and data imbalance problems. To solve these problems, this paper proposes a malicious network traffic detection model based on BiTCN and multi-head self-attention (MHSA) mechanism, namely BiTCN_MHSA, it innovatively uses the MHSA mechanism to assign different weights to different subsequences of network traffic, thus making the model more focused on the characteristics of malicious network traffic as well as improving the efficiency of processing global network traffic; Moreover, it also changes its loss function to a cross-entropy loss function to penalize misclassification more severely, thereby speeding up the convergence. Finally, extensive experiments are conduced to evaluate the efficiency of proposed BiTCN_MHSA model on two public network traffic, the experimental results verify that the proposed BiTCN_MHSA model outperforms six state-of-the-arts in precision, recall, F1-measure and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clhoxvpze完成签到 ,获得积分10
5秒前
11秒前
大洋的沙滩完成签到,获得积分10
12秒前
忽而今夏发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
Willy完成签到,获得积分10
23秒前
一一发布了新的文献求助10
23秒前
老迟到的晓露完成签到,获得积分10
23秒前
25秒前
忽而今夏完成签到,获得积分10
26秒前
科研通AI5应助一一采纳,获得10
35秒前
优秀棒棒糖完成签到 ,获得积分10
35秒前
35秒前
37秒前
41秒前
饼子发布了新的文献求助10
42秒前
认真的幻姬完成签到,获得积分10
49秒前
57秒前
1分钟前
zxy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
共享精神应助zxy采纳,获得10
1分钟前
1分钟前
辰昜发布了新的文献求助10
1分钟前
1分钟前
DolphinA发布了新的文献求助10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
独特雁玉完成签到 ,获得积分10
1分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
Iris发布了新的文献求助10
2分钟前
yy完成签到,获得积分20
2分钟前
共享精神应助千万雷同采纳,获得10
2分钟前
Rn完成签到 ,获得积分0
2分钟前
2分钟前
xin完成签到,获得积分10
2分钟前
3分钟前
wyz完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186091
求助须知:如何正确求助?哪些是违规求助? 4371430
关于积分的说明 13612208
捐赠科研通 4223806
什么是DOI,文献DOI怎么找? 2316665
邀请新用户注册赠送积分活动 1315295
关于科研通互助平台的介绍 1264338