Detection of diabetic patients in people with normal fasting glucose using machine learning

医学 糖尿病 逻辑回归 随机森林 人工智能 试验装置 支持向量机 空腹血糖值 机器学习 内科学 胰岛素抵抗 内分泌学 计算机科学
作者
Kun Lv,Chunmei Cui,Rui Fan,Xiaojuan Zha,Pengyu Wang,Jun Zhang,Lina Zhang,Jing Ke,Dong Zhao,Qinghua Cui,Liming Yang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:18
标识
DOI:10.1186/s12916-023-03045-9
摘要

Abstract Background Diabetes mellitus (DM) is a chronic metabolic disease that could produce severe complications threatening life. Its early detection is thus quite important for the timely prevention and treatment. Normally, fasting blood glucose (FBG) by physical examination is used for large-scale screening of DM; however, some people with normal fasting glucose (NFG) actually have suffered from diabetes but are missed by the examination. This study aimed to investigate whether common physical examination indexes for diabetes can be used to identify the diabetes individuals from the populations with NFG. Methods The physical examination data from over 60,000 individuals with NFG in three Chinese cohorts were used. The diabetes patients were defined by HbA1c ≥ 48 mmol/mol (6.5%). We constructed the models using multiple machine learning methods, including logistic regression, random forest, deep neural network, and support vector machine, and selected the optimal one on the validation set. A framework using permutation feature importance algorithm was devised to discover the personalized risk factors. Results The prediction model constructed by logistic regression achieved the best performance with an AUC, sensitivity, and specificity of 0.899, 85.0%, and 81.1% on the validation set and 0.872, 77.9%, and 81.0% on the test set, respectively. Following feature selection, the final classifier only requiring 13 features, named as DRING (diabetes risk of individuals with normal fasting glucose), exhibited reliable performance on two newly recruited independent datasets, with the AUC of 0.964 and 0.899, the balanced accuracy of 84.2% and 81.1%, the sensitivity of 100% and 76.2%, and the specificity of 68.3% and 86.0%, respectively. The feature importance ranking analysis revealed that BMI, age, sex, absolute lymphocyte count, and mean corpuscular volume are important factors for the risk stratification of diabetes. With a case, the framework for identifying personalized risk factors revealed FBG, age, and BMI as significant hazard factors that contribute to an increased incidence of diabetes. DRING webserver is available for ease of application ( http://www.cuilab.cn/dring ). Conclusions DRING was demonstrated to perform well on identifying the diabetes individuals among populations with NFG, which could aid in early diagnosis and interventions for those individuals who are most likely missed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素友安完成签到 ,获得积分10
刚刚
LIAO完成签到,获得积分10
1秒前
1秒前
如风过境发布了新的文献求助10
1秒前
han完成签到,获得积分10
1秒前
汉堡包应助wxr采纳,获得10
2秒前
Jingyi发布了新的文献求助10
2秒前
2秒前
姜露萍发布了新的文献求助10
2秒前
Weiyu发布了新的文献求助10
3秒前
顾矜应助小王采纳,获得10
3秒前
3秒前
忘语发布了新的文献求助10
3秒前
CodeCraft应助kwl采纳,获得10
4秒前
4秒前
赘婿应助123采纳,获得10
4秒前
jieni完成签到,获得积分10
5秒前
Starry完成签到,获得积分10
5秒前
黎晓发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
dabriaolga完成签到,获得积分10
8秒前
8秒前
8秒前
如梦华发布了新的文献求助10
8秒前
黙宇循光发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
智慧莎完成签到,获得积分10
10秒前
10秒前
姜露萍完成签到,获得积分10
10秒前
ieZH发布了新的文献求助10
10秒前
10秒前
Zx_1993应助快乐仙知采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839