Methane emission and influencing factors of China's oil and natural gas sector in 2020–2060: A source level analysis

甲烷 温室气体 天然气 无组织排放 环境科学 甲烷排放 化石燃料 石油工业 环境工程 自然资源经济学 废物管理 工程类 经济 化学 生态学 有机化学 生物
作者
Shuo Sun,Linwei Ma,Zheng Li
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:905: 167116-167116 被引量:4
标识
DOI:10.1016/j.scitotenv.2023.167116
摘要

The Chinese oil and gas industry requires targeted policies to reduce methane emissions. To achieve this goal, it is necessary to predict future methane emission trends and analyze the factors that influence them. However, changing economic development patterns, insufficient analysis of various factors influencing emissions, and inadequate resolution of methane emission inventories have made these goals difficult to achieve. Accordingly, this study aims to expand the methane emission estimation method to compile source-level emission inventories for future emissions, analyze the factors influencing them, and form a mechanistic understanding of the methane emissions from the local oil and gas industry. The research results indicate that methane emissions deriving from this industry will increase rapidly before 2030, after which they will decline slowly in all scenarios. The production and utilization processes in the natural gas supply chain, i.e., compressors and liquid unloading, include the main sources of methane emissions. Emissions are affected significantly by total production and consumption. Change in the overall supply and demand of natural gas affects change in methane emissions more significantly than adopting new technologies and strengthening facility maintenance, i.e., the overall supply and demand of natural gas are the dominant factors in controlling methane emissions. This study suggests that controlling the total demand for oil and gas should be at the core of the methane emission control policy for the local oil and gas industry. Moreover, equipment maintenance and emission reduction technologies should be used more effectively to reduce total emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A.y.w完成签到,获得积分10
刚刚
kyleaa完成签到,获得积分20
刚刚
1秒前
烟花应助汤圆采纳,获得10
2秒前
呐呐呐呐呐呐完成签到 ,获得积分20
2秒前
3秒前
紧张的友灵完成签到,获得积分10
5秒前
如云轻如水澈完成签到,获得积分20
7秒前
7秒前
Wsyyy发布了新的文献求助10
9秒前
qing应助上善若水采纳,获得10
11秒前
yanziwu94发布了新的文献求助10
13秒前
Endeavor完成签到,获得积分10
17秒前
wwss发布了新的文献求助10
18秒前
521科研菜鸟完成签到,获得积分10
18秒前
yubin.cao发布了新的文献求助10
18秒前
JasonQAQ发布了新的文献求助10
18秒前
19秒前
hxd完成签到,获得积分10
22秒前
深情安青应助平常的凡之采纳,获得10
23秒前
无花果应助JasonQAQ采纳,获得10
24秒前
24秒前
owldan发布了新的文献求助10
24秒前
坚强擎汉完成签到 ,获得积分10
25秒前
25秒前
27秒前
vlots应助非而者厚采纳,获得30
29秒前
29秒前
Miaomiao发布了新的文献求助10
29秒前
31秒前
31秒前
32秒前
徐小锤发布了新的文献求助10
35秒前
完美世界应助兴奋仙人掌采纳,获得10
35秒前
36秒前
趣多多发布了新的文献求助10
38秒前
39秒前
啦啦啦啦发布了新的文献求助10
42秒前
YYJ发布了新的文献求助10
42秒前
wanci应助鑫鑫采纳,获得10
43秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319