Origin of strain tunability in flat valence band and ultrahigh shear piezoelectricity in superflexible non–van der Waals graphitic ScX monolayers ( X=P , As, Sb)

范德瓦尔斯力 压电 材料科学 声子 剪切模量 价(化学) 凝聚态物理 剪切(地质) 结晶学 物理 复合材料 量子力学 化学 分子
作者
Harshita Seksaria,Arneet Kaur,Abir De Sarkar
出处
期刊:Physical review [American Physical Society]
卷期号:108 (7)
标识
DOI:10.1103/physrevb.108.075426
摘要

Utilizing the exceptional characteristics of two-dimensional (2D) materials for solid-state electronic devices presents an appealing strategy that could potentially address the need to prolong Moore's law. Evidently, the prevailing fraction of technically viable materials, which have already been successfully scaled up for industrial production, belongs to the category of non--van der Waals (n-vdW) materials. In recent years, research on n-vdW 2D materials has garnered significant growth owing to their potential for diverse applications and the development of synthesis techniques. In this paper, we stabilize 1-atom-thick $\mathrm{Sc}X$ ($X=\mathrm{P}$, As, Sb) monolayers drawn from their n-vdW bulk counterpart in the wurtzite phase by applying a minimal tensile strain of 1--2%. The resulting high flexibility, owing to the extremely small in-plane elastic constants (6--43 N/m) and Young's modulus (6--20 N/m), suits them ideally for extensive strain engineering on a large scale. Complex mixing of acoustic and optic phonon modes for higher strains ensures a large shear-piezoelectric coefficient of up to ${d}_{16}=\ensuremath{-}228.08$, \ensuremath{-}469.87, and \ensuremath{-}397.52 pm/V for ScP, ScAs, and ScSb respectively. This coefficient notably surpasses that in amino acids, making it the highest reported to date, and is accompanied by high in-plane piezoelectric coefficients, $|{d}_{21}|$ and $|{d}_{22}|\phantom{\rule{4pt}{0ex}}>100$ pm/V and highly strain-tunable shear piezoelectric coefficient ${d}_{15}$ ranging from \ensuremath{-}90 to 210 pm/V. The monolayers exhibit rich band structures, including flat bands at the top-most valence band and a large spin splitting of $\ensuremath{\sim}100\phantom{\rule{0.16em}{0ex}}\mathrm{meV}$, making them ideal for applications in LED and laser devices and opening exciting avenues for exploration in spintronics. In this paper, we present an in-depth analysis of band flattening caused by tensile strain and demonstrate the strong integrability of ScP monolayer with Si substrate. The ScP monolayer retains its flat band feature when implanted on silicon, which promises significant advancements in various practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
Pendragon完成签到,获得积分10
11秒前
ding应助安安采纳,获得10
12秒前
mm完成签到,获得积分10
14秒前
TangWL完成签到 ,获得积分10
15秒前
成就乐珍完成签到 ,获得积分10
15秒前
烟花应助在下废物采纳,获得10
16秒前
曾泓跃完成签到 ,获得积分10
19秒前
19秒前
今后应助曾经的听云采纳,获得10
21秒前
fdj3121完成签到,获得积分10
23秒前
科研通AI5应助风一样的我采纳,获得10
26秒前
27秒前
27秒前
die关注了科研通微信公众号
28秒前
在下废物发布了新的文献求助10
32秒前
32秒前
CipherSage应助weiwei1991采纳,获得10
33秒前
赵李艺完成签到 ,获得积分10
34秒前
34秒前
恩恩完成签到,获得积分10
37秒前
38秒前
宾周发布了新的文献求助10
38秒前
muqianyaowanan完成签到,获得积分10
39秒前
ifhaceoiv发布了新的文献求助10
39秒前
科研通AI2S应助wodeqiche2007采纳,获得30
39秒前
42秒前
赫鲁晓夫发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751