Origin of strain tunability in flat valence band and ultrahigh shear piezoelectricity in superflexible non–van der Waals graphitic ScX monolayers ( X=P , As, Sb)

范德瓦尔斯力 压电 材料科学 声子 剪切模量 价(化学) 凝聚态物理 剪切(地质) 结晶学 物理 复合材料 量子力学 化学 分子
作者
Harshita Seksaria,Arneet Kaur,Abir De Sarkar
出处
期刊:Physical review 卷期号:108 (7)
标识
DOI:10.1103/physrevb.108.075426
摘要

Utilizing the exceptional characteristics of two-dimensional (2D) materials for solid-state electronic devices presents an appealing strategy that could potentially address the need to prolong Moore's law. Evidently, the prevailing fraction of technically viable materials, which have already been successfully scaled up for industrial production, belongs to the category of non--van der Waals (n-vdW) materials. In recent years, research on n-vdW 2D materials has garnered significant growth owing to their potential for diverse applications and the development of synthesis techniques. In this paper, we stabilize 1-atom-thick $\mathrm{Sc}X$ ($X=\mathrm{P}$, As, Sb) monolayers drawn from their n-vdW bulk counterpart in the wurtzite phase by applying a minimal tensile strain of 1--2%. The resulting high flexibility, owing to the extremely small in-plane elastic constants (6--43 N/m) and Young's modulus (6--20 N/m), suits them ideally for extensive strain engineering on a large scale. Complex mixing of acoustic and optic phonon modes for higher strains ensures a large shear-piezoelectric coefficient of up to ${d}_{16}=\ensuremath{-}228.08$, \ensuremath{-}469.87, and \ensuremath{-}397.52 pm/V for ScP, ScAs, and ScSb respectively. This coefficient notably surpasses that in amino acids, making it the highest reported to date, and is accompanied by high in-plane piezoelectric coefficients, $|{d}_{21}|$ and $|{d}_{22}|\phantom{\rule{4pt}{0ex}}>100$ pm/V and highly strain-tunable shear piezoelectric coefficient ${d}_{15}$ ranging from \ensuremath{-}90 to 210 pm/V. The monolayers exhibit rich band structures, including flat bands at the top-most valence band and a large spin splitting of $\ensuremath{\sim}100\phantom{\rule{0.16em}{0ex}}\mathrm{meV}$, making them ideal for applications in LED and laser devices and opening exciting avenues for exploration in spintronics. In this paper, we present an in-depth analysis of band flattening caused by tensile strain and demonstrate the strong integrability of ScP monolayer with Si substrate. The ScP monolayer retains its flat band feature when implanted on silicon, which promises significant advancements in various practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴龙完成签到,获得积分10
刚刚
莹亮的星空完成签到,获得积分0
3秒前
tzy6665完成签到,获得积分10
4秒前
4秒前
YIMI完成签到,获得积分10
5秒前
乐乐应助小酸奶采纳,获得10
5秒前
wazx完成签到,获得积分10
5秒前
空白完成签到,获得积分10
5秒前
大萝贝应助tzy6665采纳,获得100
9秒前
努力发芽的小黄豆完成签到 ,获得积分10
10秒前
欣喜战斗机完成签到,获得积分10
10秒前
李琪琪完成签到,获得积分20
11秒前
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
lxl98完成签到 ,获得积分10
13秒前
xxx完成签到,获得积分10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
炙热向南应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
14秒前
李琪琪发布了新的文献求助10
17秒前
17秒前
我是老大应助Zxxxxx采纳,获得10
19秒前
高贵的思天完成签到,获得积分10
20秒前
豆包完成签到,获得积分10
21秒前
22秒前
Rainbow发布了新的文献求助10
22秒前
xiao142发布了新的文献求助10
24秒前
好好发布了新的文献求助20
24秒前
goweller完成签到 ,获得积分10
24秒前
27秒前
失眠的蓝完成签到,获得积分10
27秒前
jmsuwanglei发布了新的文献求助30
28秒前
白月当归完成签到,获得积分10
29秒前
31秒前
31秒前
开朗熊猫完成签到,获得积分10
32秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469246
求助须知:如何正确求助?哪些是违规求助? 2136434
关于积分的说明 5443488
捐赠科研通 1860946
什么是DOI,文献DOI怎么找? 925532
版权声明 562702
科研通“疑难数据库(出版商)”最低求助积分说明 495140