Principles of Forgetting in Domain-Incremental Semantic Segmentation in Adverse Weather Conditions

遗忘 计算机科学 人工智能 分割 领域(数学分析) 特征(语言学) 机器学习 深度学习 感知 卷积神经网络 认知心理学 数学 语言学 生物 数学分析 哲学 神经科学 心理学
作者
Tobias Kalb,Jürgen Beyerer
标识
DOI:10.1109/cvpr52729.2023.01869
摘要

Deep neural networks for scene perception in automated vehicles achieve excellent results for the domains they were trained on. However, in real-world conditions, the domain of operation and its underlying data distribution are subject to change. Adverse weather conditions, in particular, can significantly decrease model performance when such data are not available during training. Additionally, when a model is incrementally adapted to a new domain, it suffers from catastrophic forgetting, causing a significant drop in performance on previously observed domains. Despite recent progress in reducing catastrophic forgetting, its causes and effects remain obscure. Therefore, we study how the representations of semantic segmentation models are affected during domain-incremental learning in adverse weather conditions. Our experiments and representational analyses indicate that catastrophic forgetting is primarily caused by changes to low-level features in domain-incremental learning and that learning more general features on the source domain using pre-training and image augmentations leads to efficient feature reuse in subsequent tasks, which drastically reduces catastrophic forgetting. These findings highlight the importance of methods that facilitate generalized features for effective continual learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助阳光土豆采纳,获得30
刚刚
jyy完成签到,获得积分20
刚刚
华仔应助洞悉采纳,获得10
1秒前
1秒前
今后应助AKK采纳,获得10
1秒前
2秒前
2秒前
2秒前
阿巴阿巴完成签到,获得积分10
3秒前
3秒前
3秒前
杳鸢完成签到,获得积分0
4秒前
李爱国应助lily采纳,获得10
5秒前
5秒前
科研通AI5应助念念采纳,获得30
5秒前
Lee完成签到,获得积分10
5秒前
隐形曼青应助Aspirin采纳,获得10
6秒前
yi完成签到,获得积分10
7秒前
Wwnjie发布了新的文献求助10
7秒前
Jasper应助火星上鑫鹏采纳,获得10
7秒前
xiaotangyuan发布了新的文献求助10
8秒前
qq发布了新的文献求助10
8秒前
野猪佩琪发布了新的文献求助10
8秒前
9秒前
Chenhangask发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
natuki发布了新的文献求助10
10秒前
lixin完成签到,获得积分10
11秒前
11秒前
天地一体完成签到,获得积分10
11秒前
呱呱发布了新的文献求助10
11秒前
情怀应助littlepuppy采纳,获得10
11秒前
科研通AI5应助圈圈采纳,获得10
12秒前
wang完成签到,获得积分10
12秒前
wanci应助洞悉采纳,获得10
12秒前
13秒前
lipeng完成签到,获得积分10
13秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817748
求助须知:如何正确求助?哪些是违规求助? 3360977
关于积分的说明 10410617
捐赠科研通 3079104
什么是DOI,文献DOI怎么找? 1690986
邀请新用户注册赠送积分活动 814289
科研通“疑难数据库(出版商)”最低求助积分说明 768068