Self-Supervised Masked Graph Autoencoder for Hyperspectral Anomaly Detection

高光谱成像 异常检测 自编码 模式识别(心理学) 人工智能 计算机科学 图形 人工神经网络 理论计算机科学
作者
Bing Tu,Baoliang He,Yan He,Tao Zhou,Bo Liu,Jun Li,Antonio Plaza
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3620091
摘要

Hyperspectral image anomaly detection faces the challenge of difficulty in annotating anomalous targets. Autoencoder (AE)-based methods are widely used due to their excellent image reconstruction capability. However, traditional grid-based image representation methods struggle to capture long-range dependencies and model non-Euclidean structures. To address these issues, this paper proposes a self-supervised Masked Graph AutoEncoder (MGAE) for hyperspectral anomaly detection. MGAE utilizes a Graph Attention Network (GAT) autoencoder to reconstruct the background of hyperspectral images and identifies anomalies by comparing the reconstructed features with the original features. Specifically, we constructs a topological graph structure of the hyperspectral image, which is then input into the GAT autoencoder for reconstruction, leveraging the multi-head attention mechanism to learn spatial and spectral features. To prevent the decoder from learning trivial solutions, we introduce a re-masking strategy that randomly masks both the input features and hidden representations during training, forcing the model to learn and reconstruct features under limited information, thereby improving detection performance. Additionally, the proposed loss function with graph Laplacian regularization (Twice Loss) minimizes variations in feature representations, leading to more consistent background reconstruction. Experimental results on several real-world hyperspectral datasets demonstrate that MGAE outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
刚刚
刘忙完成签到,获得积分10
刚刚
JamesPei应助zxzxzxzxzx采纳,获得10
刚刚
刚刚
DX120210165完成签到,获得积分10
1秒前
1秒前
Jasper应助Iridesent0v0采纳,获得10
2秒前
2秒前
嘉嘉完成签到 ,获得积分10
2秒前
2秒前
Ava应助阔达的惠采纳,获得10
2秒前
脑洞疼应助mhb115采纳,获得10
3秒前
3秒前
3秒前
4秒前
浅笑完成签到,获得积分10
4秒前
wxh关闭了wxh文献求助
5秒前
5秒前
刻苦的鸵鸟完成签到,获得积分10
5秒前
5秒前
687发布了新的文献求助10
5秒前
硕心发布了新的文献求助10
5秒前
华仔应助laola采纳,获得10
5秒前
kkk完成签到 ,获得积分10
6秒前
6秒前
oooo发布了新的文献求助10
6秒前
6秒前
iwonder发布了新的文献求助10
7秒前
秀丽念露完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
祈安*发布了新的文献求助10
7秒前
xinyuxxx发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
123zyx发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654815
求助须知:如何正确求助?哪些是违规求助? 4795608
关于积分的说明 15070611
捐赠科研通 4813367
什么是DOI,文献DOI怎么找? 2575101
邀请新用户注册赠送积分活动 1530574
关于科研通互助平台的介绍 1489178