尖晶石
过电位
材料科学
分解水
静电纺丝
法拉第效率
塔菲尔方程
化学物理
纳米技术
化学工程
化学
电极
阳极
催化作用
物理化学
电化学
生物化学
复合材料
冶金
工程类
聚合物
光催化
作者
Jin‐Hua Liu,Yuze Sun,Zhihan Gao,Wen‐Hua Yang,Lingyun Li,Wei Zheng,Wenpeng Han,Ru Li,Jun Zhang,Yun‐Ze Long
标识
DOI:10.1002/smtd.202501108
摘要
Abstract High‐entropy spinel oxides (HEOs) offer a promising route to overcome the kinetic bottleneck of the oxygen evolution reaction (OER) through synergistic multi‑metal interactions, lattice distortion, and tailored electronic structures. Here, the fabrication of a quinary FeCoNiCrMo spinel oxide nanofiber via electrospinning and controlled calcination is reported. Incorporation of Mo serves to modulate the local crystal field and electronic spin states, while application of an external magnetic field enhances spin polarization of reaction intermediates, lowering the energy barrier for triplet O 2 formation. The optimized HEO exhibits an overpotential of 240 mV at 10 mA cm − 2 and a Tafel slope of 45 mV·dec −1 under a 400 mT magnetic field, outperforming most reported high‑entropy catalysts. Density functional theory (DFT) and in situ Raman spectroscopy reveal that magnetic‐field‐assisted spin filtering accelerates O─O bond formation via a spin‑aligned dual‑site mechanism. Assembling HEO with Pt/C in a two‑electrode electrolyzer achieves overall water splitting at 10 mA·cm −2 with a cell voltage of 1.565 V and near 100% Faradaic efficiency. This work demonstrates the powerful synergy of high‑entropy design and magnetic spin control, offering a fresh strategy for high‑performance water‑splitting electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI