TripleNet: Exploiting Complementary Features and Pseudo-Labels for Semi-Supervised Salient Object Detection

人工智能 模式识别(心理学) 计算机科学 目标检测 计算机视觉 对象(语法) 特征提取 图像处理 突出 图像(数学)
作者
Liyuan Chen,Ming–Hsuan Yang,Jian Pu,Zhonglong Zheng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3601334
摘要

Due to the limited output categories, semi-supervised salient object detection faces challenges in adapting conventional semi-supervised strategies. To address this limitation, we propose a multi-branch architecture that extracts complementary features from labeled data. Specifically, we introduce TripleNet, a three-branch network architecture designed for contour, content, and holistic saliency prediction. The supervision signals for the contour and content branches are derived by decomposing the limited ground truths. After training on the labeled data, the model produces pseudo-labels for unlabeled images, including contour, content, and salient objects. By leveraging the complementarity between the contour and content branches, we construct coupled pseudo-saliency labels by integrating the pseudo-contour and pseudo-content labels, which differ from the model-inferred pseudo-saliency labels. We further develop an enhanced pseudo-labeling mechanism that generates enhanced pseudo-saliency labels by combining reliable regions from both pseudo-saliency labels. Moreover, we incorporate a partial binary cross-entropy loss function to guide the learning of the saliency branch to focus on effective regions within the enhanced pseudo-saliency labels, which are identified through our adaptive thresholding approach. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance using only 329 labeled training images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助123采纳,获得10
2秒前
CodeCraft应助仔仔采纳,获得10
2秒前
3秒前
3秒前
搜集达人应助智博36采纳,获得10
4秒前
4秒前
有魅力醉山完成签到,获得积分10
7秒前
TWE完成签到,获得积分10
9秒前
10秒前
w_w应助123采纳,获得30
11秒前
12秒前
12秒前
佛人世间完成签到,获得积分10
13秒前
zhaoshao完成签到,获得积分10
14秒前
嘿哈完成签到,获得积分10
14秒前
笑纳完成签到,获得积分10
15秒前
orixero应助山头人二号采纳,获得10
16秒前
17秒前
LILY发布了新的文献求助10
17秒前
Hello应助等待的谷波采纳,获得10
17秒前
17秒前
mary完成签到,获得积分10
18秒前
20秒前
大大大漂亮完成签到 ,获得积分10
20秒前
Frank完成签到,获得积分10
20秒前
领导范儿应助迷人依白采纳,获得10
21秒前
科研通AI5应助zgd采纳,获得10
24秒前
陈砍砍完成签到 ,获得积分10
24秒前
24秒前
Frank发布了新的文献求助10
24秒前
waoller1发布了新的文献求助10
27秒前
27秒前
丰富的正豪完成签到,获得积分10
28秒前
张晓芮完成签到 ,获得积分10
29秒前
29秒前
仔仔发布了新的文献求助10
29秒前
29秒前
勤恳的嚓茶完成签到,获得积分10
31秒前
彭于晏应助欢喜海采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336