Augmenting 3-D Object Detection Through Data Uncertainty-Driven Auxiliary Framework

目标检测 计算机科学 最小边界框 点云 对象(语法) 跳跃式监视 人工智能 GSM演进的增强数据速率 数据挖掘 回归 点(几何) 探测器 机器学习 模式识别(心理学) 图像(数学) 数学 统计 电信 几何学
作者
Jianyu Wang,Shengjie Zhao,Shuang Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:2
标识
DOI:10.1109/tim.2024.3398077
摘要

3D object detection algorithms are becoming increasingly crucial in autonomous driving, demanding high accuracy and reasoning speed. Due to the uneven and extremely sparse distribution of point clouds in current point cloud datasets, interference from background information is significant, potentially leading to fatal errors during driving. Therefore, existing 3D object detection techniques in autonomous vehicles require a method to suppress False Positive (FP) and False Negative (FN) samples. Due to issues inherent in the dataset itself, data augmentation and dataset expansion are ineffective in resolving the problem of predicting object errors. To address these challenges, this study introduces a universal auxiliary framework, DUA, for 3D object detection. By applying the DUA framework based on data uncertainty for predicting classification and regression uncertainties, the number of projected FP samples can be minimized, and classification sensitivity enhanced. Bounding box regression can be predicted in a more reasonable manner. The methods for classification loss and regression loss are redesigned to improve detection accuracy. Additionally, a data uncertainty-based object filtering adjuster is designed. This added strategy can be flexibly employed with cutting-edge detectors to enhance model accuracy while largely preserving parameters in their original states. Experiments on the KITTI and Waymo Open datasets demonstrate that after inserting DUA, mainstream frameworks show a maximum improvement of 6.27% mAP in overall prediction performance, with an unavoidable average efficiency decrease of approximately 1.2 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助腼腆的修杰采纳,获得30
刚刚
科研通AI5应助细腻的山水采纳,获得10
刚刚
3477发布了新的文献求助10
2秒前
我是老大应助徐振华采纳,获得10
3秒前
SYLH应助勇士绿老师采纳,获得10
5秒前
跳跳完成签到,获得积分10
6秒前
深情安青应助Tzzl0226采纳,获得10
7秒前
8秒前
科研通AI5应助我真服了采纳,获得10
9秒前
10秒前
Sandy发布了新的文献求助10
10秒前
小巴德发布了新的文献求助10
11秒前
12秒前
Frank_li发布了新的文献求助10
12秒前
12秒前
星辰大海应助鲤鱼小鸽子采纳,获得10
13秒前
科研小白白完成签到 ,获得积分10
13秒前
千堆雪发布了新的文献求助10
14秒前
华仔应助王崇然采纳,获得10
15秒前
跳跃太清完成签到 ,获得积分10
15秒前
15秒前
威武的匕发布了新的文献求助10
15秒前
Been完成签到,获得积分20
16秒前
云铱梦令发布了新的文献求助10
17秒前
17秒前
18秒前
wsfy15完成签到 ,获得积分10
19秒前
Been发布了新的文献求助10
19秒前
了一李应助科研通管家采纳,获得10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
贪玩凝荷发布了新的文献求助10
21秒前
科研通AI5应助科研通管家采纳,获得100
21秒前
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
21秒前
烟花应助科研通管家采纳,获得10
21秒前
22秒前
iu发布了新的文献求助10
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787674
求助须知:如何正确求助?哪些是违规求助? 3333313
关于积分的说明 10261091
捐赠科研通 3048951
什么是DOI,文献DOI怎么找? 1673366
邀请新用户注册赠送积分活动 801847
科研通“疑难数据库(出版商)”最低求助积分说明 760369