DIAS: A dataset and benchmark for intracranial artery segmentation in DSA sequences

水准点(测量) 分割 人工智能 计算机科学 模式识别(心理学) 对比度(视觉) 尺度空间分割 图像分割 计算机视觉 地理 大地测量学
作者
Wentao Liu,Tangbin Tian,Lemeng Wang,Weijin Xu,Lei Li,Haoyuan Li,Wenyi Zhao,Siyu Tian,Xipeng Pan,Yiming Deng,Feng Gao,Huihua Yang,Xin Wang,Ruisheng Su
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103247-103247 被引量:4
标识
DOI:10.1016/j.media.2024.103247
摘要

The automated segmentation of Intracranial Arteries (IA) in Digital Subtraction Angiography (DSA) plays a crucial role in the quantification of vascular morphology, significantly contributing to computer-assisted stroke research and clinical practice. Current research primarily focuses on the segmentation of single-frame DSA using proprietary datasets. However, these methods face challenges due to the inherent limitation of single-frame DSA, which only partially displays vascular contrast, thereby hindering accurate vascular structure representation. In this work, we introduce DIAS, a dataset specifically developed for IA segmentation in DSA sequences. We establish a comprehensive benchmark for evaluating DIAS, covering full, weak, and semi-supervised segmentation methods. Specifically, we propose the vessel sequence segmentation network, in which the sequence feature extraction module effectively captures spatiotemporal representations of intravascular contrast, achieving intracranial artery segmentation in 2D+Time DSA sequences. For weakly-supervised IA segmentation, we propose a novel scribble learning-based image segmentation framework, which, under the guidance of scribble labels, employs cross pseudo-supervision and consistency regularization to improve the performance of the segmentation network. Furthermore, we introduce the random patch-based self-training framework, aimed at alleviating the performance constraints encountered in IA segmentation due to the limited availability of annotated DSA data. Our extensive experiments on the DIAS dataset demonstrate the effectiveness of these methods as potential baselines for future research and clinical applications. The dataset and code are publicly available at https://doi.org/10.5281/zenodo.11401368 and https://github.com/lseventeen/DIAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JY发布了新的文献求助10
刚刚
空白大脑完成签到,获得积分20
2秒前
殷晓阳发布了新的文献求助10
3秒前
up完成签到,获得积分10
4秒前
搜集达人应助饼呢采纳,获得10
4秒前
方方完成签到,获得积分10
5秒前
tp040900完成签到,获得积分10
6秒前
7秒前
最爱喝酸奶完成签到,获得积分10
9秒前
11秒前
时梦冉发布了新的文献求助10
11秒前
尚可发布了新的文献求助10
14秒前
hoyden完成签到,获得积分10
15秒前
fang完成签到 ,获得积分10
16秒前
17秒前
20秒前
内向忆南完成签到,获得积分10
20秒前
无糖零脂发布了新的文献求助10
22秒前
所所应助Alan采纳,获得10
22秒前
xzy998应助援兮采纳,获得10
23秒前
24秒前
27秒前
打打应助尚可采纳,获得10
28秒前
29秒前
销凝完成签到,获得积分20
30秒前
30秒前
32秒前
xzy998应助魏伯安采纳,获得10
32秒前
销凝发布了新的文献求助10
34秒前
lululu驳回了英姑应助
34秒前
weiwei发布了新的文献求助30
35秒前
xie发布了新的文献求助10
36秒前
柏1Y发布了新的文献求助10
36秒前
陈1992发布了新的文献求助10
36秒前
善学以致用应助潘越采纳,获得10
36秒前
科目三应助weiwei采纳,获得50
40秒前
40秒前
41秒前
shuyi完成签到,获得积分10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170723
求助须知:如何正确求助?哪些是违规求助? 3706373
关于积分的说明 11694462
捐赠科研通 3392311
什么是DOI,文献DOI怎么找? 1860629
邀请新用户注册赠送积分活动 920493
科研通“疑难数据库(出版商)”最低求助积分说明 832732