FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model

可扩展性 计算机科学 基础(证据) 脑电图 心理学 神经科学 地理 数据库 考古
作者
Anna Tegon,Thorir Mar Ingolfsson,Xiaying Wang,Luca Benini,Yawei Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.06438
摘要

Accurate and efficient electroencephalography (EEG) analysis is essential for detecting seizures and artifacts in long-term monitoring, with applications spanning hospital diagnostics to wearable health devices. Robust EEG analytics have the potential to greatly improve patient care. However, traditional deep learning models, especially Transformer-based architectures, are hindered by their quadratic time and memory complexity, making them less suitable for resource-constrained environments. To address these challenges, we present FEMBA (Foundational EEG Mamba + Bidirectional Architecture), a novel self-supervised framework that establishes new efficiency benchmarks for EEG analysis through bidirectional state-space modeling. Unlike Transformer-based models, which incur quadratic time and memory complexity, FEMBA scales linearly with sequence length, enabling more scalable and efficient processing of extended EEG recordings. Trained on over 21,000 hours of unlabeled EEG and fine-tuned on three downstream tasks, FEMBA achieves competitive performance in comparison with transformer models, with significantly lower computational cost. Specifically, it reaches 81.82% balanced accuracy (0.8921 AUROC) on TUAB and 0.949 AUROC on TUAR, while a tiny 7.8M-parameter variant demonstrates viability for resource-constrained devices. These results pave the way for scalable, general-purpose EEG analytics in both clinical and highlight FEMBA as a promising candidate for wearable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
1秒前
无限猕猴桃应助leo采纳,获得10
5秒前
6秒前
7秒前
兴奋的冰棍完成签到,获得积分10
7秒前
8秒前
Zo完成签到,获得积分10
9秒前
11秒前
L.发布了新的文献求助10
14秒前
汉堡包应助蟹蟹采纳,获得10
14秒前
慕青应助义气的行天采纳,获得10
15秒前
wake发布了新的文献求助10
17秒前
呆鸥完成签到,获得积分10
18秒前
19秒前
19秒前
12356完成签到,获得积分10
20秒前
littlepuppy发布了新的文献求助10
24秒前
大先生完成签到,获得积分10
25秒前
25秒前
Micheal完成签到,获得积分10
26秒前
共享精神应助屿杓采纳,获得10
28秒前
SciGPT应助菠萝吹雪花啤采纳,获得10
29秒前
BingyuLi完成签到,获得积分10
29秒前
彭于彦祖应助大先生采纳,获得20
30秒前
30秒前
CodeCraft应助littlepuppy采纳,获得10
32秒前
33秒前
乐乐应助sctaaa采纳,获得10
33秒前
123456完成签到,获得积分10
34秒前
是真的宇航员啊完成签到,获得积分10
35秒前
MJ发布了新的文献求助10
35秒前
brucezheng完成签到,获得积分10
36秒前
37秒前
大喜子完成签到,获得积分10
37秒前
屿杓发布了新的文献求助10
39秒前
隐形曼青应助brucezheng采纳,获得10
40秒前
40秒前
41秒前
41秒前
who完成签到,获得积分20
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390