Pear Fruit Detection Model in Natural Environment Based on Lightweight Transformer Architecture

建筑 变压器 计算机科学 植物 环境科学 生物 工程类 地理 电气工程 考古 电压
作者
Zheng Huang,Xun Zhang,Wang Hong-sen,Huajie Wei,Yi Zhang,Guihong Zhou
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:15 (1): 24-24 被引量:5
标识
DOI:10.3390/agriculture15010024
摘要

Aiming at the problems of low precision, slow speed and difficult detection of small target pear fruit in a real environment, this paper designs a pear fruit detection model in a natural environment based on a lightweight Transformer architecture based on the RT-DETR model. Meanwhile, Xinli No. 7 fruit data set with different environmental conditions is established. First, based on the original model, the backbone was replaced with a lightweight FasterNet network. Secondly, HiLo, an improved and efficient attention mechanism with high and low-frequency information extraction, was used to make the model lightweight and improve the feature extraction ability of Xinli No. 7 in complex environments. The CCFM module is reconstructed based on the Slim-Neck method, and the loss function of the original model is replaced with the Shape-NWD small target detection mechanism loss function to enhance the feature extraction capability of the network. The comparison test between RT-DETR and YOLOv5m, YOLOv7, YOLOv8m and YOLOv10m, Deformable-DETR models shows that RT-DETR can achieve a good balance in terms of model lightweight and recognition accuracy compared with other models, and comprehensively exceed the detection accuracy of the current advanced YOLOv10 algorithm, which can realize the rapid detection of Xinli No. 7 fruit. In this paper, the accuracy rate, recall rate and average accuracy of the improved model reached 93.7%, 91.9% and 98%, respectively, and compared with the original model, the number of params, calculation amount and weight memory was reduced by 48.47%, 56.2% and 48.31%, respectively. This model provides technical support for Xinli No. 7 fruit detection and model deployment in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝雨旋完成签到,获得积分10
刚刚
刚刚
liangban发布了新的文献求助10
刚刚
赫若魔应助fjiang2003采纳,获得10
刚刚
馆长应助我的文献呢采纳,获得50
刚刚
11完成签到,获得积分10
刚刚
刚刚
西瓜完成签到 ,获得积分10
1秒前
1秒前
2秒前
cruise完成签到,获得积分10
2秒前
cxy3311发布了新的文献求助12
2秒前
打打应助Sayhai采纳,获得10
3秒前
jzhou88完成签到,获得积分10
3秒前
付金辰关注了科研通微信公众号
3秒前
11发布了新的文献求助10
4秒前
hymmloveGD完成签到,获得积分10
4秒前
WSGQT完成签到,获得积分10
4秒前
秦秦秦发布了新的文献求助10
5秒前
5秒前
ppat5012发布了新的文献求助10
6秒前
小马甲应助安静的难破采纳,获得30
6秒前
脑洞疼应助大方的大地采纳,获得10
6秒前
7秒前
7秒前
蔺山河发布了新的文献求助10
7秒前
liangban完成签到,获得积分10
7秒前
7秒前
奋斗的冬云完成签到,获得积分10
7秒前
求真科技完成签到,获得积分10
8秒前
香蕉觅云应助glycine采纳,获得10
8秒前
嘻嘻哈哈完成签到 ,获得积分10
8秒前
Shelton完成签到,获得积分10
9秒前
9秒前
9秒前
小野菌完成签到,获得积分10
10秒前
10秒前
馆长举报EFM求助涉嫌违规
10秒前
Wow完成签到,获得积分10
10秒前
wwq发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697567
求助须知:如何正确求助?哪些是违规求助? 4067023
关于积分的说明 12573719
捐赠科研通 3766390
什么是DOI,文献DOI怎么找? 2080027
邀请新用户注册赠送积分活动 1108163
科研通“疑难数据库(出版商)”最低求助积分说明 986478