SRF: SpectrumRecombineFormer for Hyperspectral Image Classification

高光谱成像 计算机科学 人工智能 计算机视觉 图像(数学) 模式识别(心理学)
作者
Weipeng Jing,Peilun Kang,Donglin Di,Juntao Gu,Linhui Li,Mahmoud Emam,Linda Mohaisen,Xun Yang,Chao Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3715698
摘要

Hyperspectral (HS) imaging is a valuable technique for accurately classifying materials because of the abundance of spectral information and high resolution it provides. However, the characteristics of Hyperspectral images (HSI), such as high-dimensional features and information redundancy, pose significant challenges to data processing. Traditional dimensionality reduction methods often have information loss, high computational complexity, and easy to ignore the strong correlation between HSI spectral bands when dealing with HSI data. Although other methods can achieve satisfactory classification performance, they do not consider the dimensionality reduction of HSI, and they focus on the model performance, which limits further improvement in classification performance. This paper proposes a transformer-based framework called “SpectrumRecombineFormer” (SRF), which is composed of two key modules, namely “Spatial Spectral ReCombination” (SSRC) and “Cross-layer Fusion” (CF). The SSRC is capable of utilizing both adjacent and non-adjacent spectrums to generate the spatial-sequential perceptive representations, which alleviates the effect of the strong correlation between HSI spectral bands. The CF can avoid the loss of information during the feed-forward procedure among layers. Extensive experiments on five existing datasets (widely-adopted Indian Pines, Houston2013, Pavia University, Salinas and KSC) demonstrate the capability of our proposed method to address the above mentioned challenges. Both quantitative and qualitative experimental ablation studies, including visualization results, reveal that the proposed SRF method can successfully and efficiently classify hyperspectral images and surpass the other state-of-the-art methods. For access to the source code, please visit https://github.com/kangpeilun/SRF-HSI-Classification-master .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu发布了新的文献求助10
1秒前
光旭关注了科研通微信公众号
1秒前
密密麻麻M发布了新的文献求助10
1秒前
LCC完成签到 ,获得积分10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
不倦应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
尼古丁真应助科研通管家采纳,获得10
2秒前
乐乐应助老詹头采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
生动梦松应助科研通管家采纳,获得10
2秒前
从容芮应助科研通管家采纳,获得50
3秒前
wanci应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
雪饼应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
不倦应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
芽茶发布了新的文献求助10
3秒前
3秒前
4秒前
谭久久发布了新的文献求助10
4秒前
4秒前
yi关闭了yi文献求助
5秒前
bkagyin应助轻松幼蓉采纳,获得10
5秒前
半醉哥发布了新的文献求助10
5秒前
6秒前
8秒前
小小怪完成签到 ,获得积分10
8秒前
刘翰焜完成签到 ,获得积分10
8秒前
Yina完成签到 ,获得积分10
8秒前
首席或雪月完成签到,获得积分10
9秒前
maxSpr完成签到,获得积分10
9秒前
机智小猫咪完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
全球及中国7nm节点及以下先进制程技术行业市场发展现状及发展前景研究报告(2025-2030版) 1000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4488907
求助须知:如何正确求助?哪些是违规求助? 3943226
关于积分的说明 12228799
捐赠科研通 3599966
什么是DOI,文献DOI怎么找? 1979720
邀请新用户注册赠送积分活动 1016633
科研通“疑难数据库(出版商)”最低求助积分说明 909758