清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine vision combined with deep learning–based approaches for food authentication: An integrative review and new insights

计算机科学 人工智能 可解释性 机器学习 机器视觉 认证(法律) 鉴定(生物学) 过度拟合 软件部署 数据科学 计算机安全 人工神经网络 软件工程 植物 生物
作者
Che Shen,Ran Wang,Hira Nawazish,Bo Wang,Kezhou Cai,Baocai Xu
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:23 (6) 被引量:15
标识
DOI:10.1111/1541-4337.70054
摘要

Food fraud undermines consumer trust, creates economic risk, and jeopardizes human health. Therefore, it is essential to develop efficient technologies for rapid and reliable analysis of food quality and safety for food authentication. Machine vision-based methods have emerged as promising solutions for the rapid and nondestructive analysis of food authenticity and quality. The Industry 4.0 revolution has introduced new trends in this field, including the use of deep learning (DL), a subset of artificial intelligence, which demonstrates robust performance and generalization capabilities, effectively extracting features, and processing extensive data. This paper reviews recent advances in machine vision and various DL-based algorithms for food authentication, including DL and lightweight DL, used for food authenticity analysis such as adulteration identification, variety identification, freshness detection, and food quality identification by combining them with a machine vision system or with smartphones and portable devices. This review explores the limitations of machine vision and the challenges of DL, which include overfitting, interpretability, accessibility, data privacy, algorithmic bias, and design and deployment of lightweight DLs, and miniaturization of sensing devices. Finally, future developments and trends in this field are discussed, including the development of real-time detection systems that incorporate a combination of machine vision and DL methods and the expansion of databases. Overall, the combination of vision-based techniques and DL is expected to enable faster, more affordable, and more accurate food authentication methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的起眸完成签到 ,获得积分20
38秒前
无花果应助无心的起眸采纳,获得10
1分钟前
sci2025opt完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
852应助小学森采纳,获得10
1分钟前
SciGPT应助无心的起眸采纳,获得10
2分钟前
斯文败类应助影月采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
2分钟前
Eternity完成签到,获得积分10
3分钟前
烟花应助无心的起眸采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
IgorLi完成签到,获得积分10
3分钟前
如歌完成签到,获得积分10
3分钟前
3分钟前
3分钟前
星辰大海应助IgorLi采纳,获得10
4分钟前
懒到没有线粒体完成签到 ,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
4分钟前
charih完成签到 ,获得积分10
5分钟前
科研通AI2S应助无心的起眸采纳,获得10
5分钟前
朴素海亦完成签到 ,获得积分10
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
6分钟前
潇潇暮雨发布了新的文献求助10
6分钟前
7分钟前
starleo发布了新的文献求助30
7分钟前
正直夜安完成签到 ,获得积分10
7分钟前
7分钟前
IgorLi发布了新的文献求助10
7分钟前
幸运小猫发布了新的文献求助10
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4729588
求助须知:如何正确求助?哪些是违规求助? 4085221
关于积分的说明 12633935
捐赠科研通 3792736
什么是DOI,文献DOI怎么找? 2094420
邀请新用户注册赠送积分活动 1120272
科研通“疑难数据库(出版商)”最低求助积分说明 996345