Large Language Modeling to Assist Natural Polyphenols as Green Precipitants for Recycling Spent Batteries

环境污染 持续性 电池(电) 环境科学 计算机科学 多酚 生化工程 工艺工程 废物管理 化学 工程类 功率(物理) 生态学 环境保护 生物 物理 量子力学 生物化学 抗氧化剂
作者
Huijun Huang,Mei Chen,Yajing Zhang,Xiaoling Wang,Qiuping Xie,Yiran Pu,Yuanmeng He,Zhu Li-min,Yunxiang He,Junling Guo
出处
期刊:Langmuir [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.langmuir.4c04262
摘要

The growing demand for energy storage batteries, driven by the need to alleviate global warming and reduce fossil fuel dependency, has led to environmental concerns surrounding spent batteries. Efficient recycling of these batteries is essential to prevent pollution and recover valuable metal ions such as nickel (Ni2+), cobalt (Co2+), and manganese (Mn2+). Conventional hydrometallurgical methods for battery recycling, while effective, often involve harmful chemicals and processes. Natural polyphenols offer a greener alternative due to their ability to coordinate with metal ions. However, optimizing polyphenol selection for efficient recovery remains a labor-intensive challenge. This study presents a strategy combining natural polyphenols as green precipitants with the power of GPT-4, a large language model (LLM), to enhance the precipitation and recovery of metal ions from spent batteries. By leveraging the capabilities of GPT-4 in natural language processing, we enable a dynamic, iterative collaboration between human researchers and the LLM, optimizing polyphenol selection for different experimental conditions. The results show that tannic acid achieved precipitation rates of 94.8, 96.7, and 96.7% for Ni2+, Co2+, and Mn2+, respectively, outperforming conventional methods. The integration of GPT-4 enhances both the efficiency and accuracy of the process, ensuring environmental sustainability by minimizing secondary pollution and utilizing biodegradable materials. This innovative strategy demonstrates the potential of combining artificial intelligence-driven analysis with green chemistry to address battery recycling challenges, paving the way for more sustainable and efficient methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助三六九采纳,获得10
刚刚
aaa完成签到,获得积分10
1秒前
Sun发布了新的文献求助10
1秒前
Preference完成签到,获得积分10
1秒前
会神完成签到,获得积分20
2秒前
3秒前
燕子完成签到,获得积分10
4秒前
5秒前
酷炫寄真完成签到,获得积分10
5秒前
搜集达人应助小米采纳,获得10
6秒前
Xu发布了新的文献求助10
6秒前
Crystal完成签到,获得积分10
7秒前
7秒前
庸俗肤浅完成签到 ,获得积分10
7秒前
zs完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Owen应助Shirely采纳,获得10
10秒前
秋辞完成签到,获得积分10
10秒前
ty发布了新的文献求助10
10秒前
10秒前
CMQ2021102261发布了新的文献求助10
11秒前
道以文完成签到,获得积分10
11秒前
懒猫发布了新的文献求助10
12秒前
osmanthus应助zs采纳,获得10
12秒前
13秒前
暗号完成签到 ,获得积分10
13秒前
情深以挽发布了新的文献求助10
13秒前
迷人的绿竹关注了科研通微信公众号
14秒前
cokk发布了新的文献求助10
14秒前
zym发布了新的文献求助10
14秒前
15秒前
15秒前
saluo完成签到,获得积分10
15秒前
仁谷居士完成签到,获得积分10
15秒前
16秒前
yang完成签到 ,获得积分10
16秒前
勤劳的如柏完成签到,获得积分10
17秒前
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692