已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ZeroFake: Zero-Shot Detection of Fake Images Generated and Edited by Text-to-Image Generation Models

弹丸 零(语言学) 计算机科学 图像(数学) 人工智能 计算机视觉 计算机图形学(图像) 哲学 材料科学 语言学 冶金
作者
Zeyang Sha,Yicong Tan,Mingjie Li,Michael Backes,Yang Zhang
标识
DOI:10.1145/3658644.3690297
摘要

The text-to-image generation model has attracted significant interest from both academic and industrial communities. These models can generate the images based on the given prompt descriptions. Their potent capabilities, while beneficial, also present risks. Previous efforts relied on the approach of training binary classifiers to detect the generated fake images, which is inefficient, lacking in generalizability, and non-robust. In this paper, we propose the novel zero-shot detection method, called ZeroFake, to distinguish fake images apart from real ones by utilizing a perturbation-based DDIM inversion technique. ZeroFake is inspired by the findings that fake images are more robust than real images during the process of DDIM inversion and reconstruction. Specifically, for a given image, ZeroFake first generates noise with DDIM inversion guided by adversary prompts. Then, ZeroFake reconstructs the image from the generated noise. Subsequently, it compares the reconstructed image with the original image to determine whether it is fake or real. By exploiting the differential response of fake and real images to the adversary prompts during the inversion and reconstruction process, our model offers a more robust and efficient method to detect fake images without the extensive data and training costs. Extensive results demonstrate that the proposed ZeroFake can achieve great performance in fake image detection, fake artwork detection, and fake edited image detection. We further illustrate the robustness of the proposed ZeroFake by showcasing its resilience against potential adversary attacks. We hope that our solution can better assist the community in achieving the arrival of a more efficient and fair AGI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
vv完成签到 ,获得积分10
1秒前
1秒前
yyy完成签到,获得积分10
5秒前
陈补天完成签到 ,获得积分10
5秒前
咕噜咕噜发布了新的文献求助30
9秒前
layers发布了新的文献求助10
12秒前
善学以致用应助charint采纳,获得10
12秒前
16秒前
xiuxiu完成签到 ,获得积分10
16秒前
稳重安双完成签到,获得积分10
16秒前
17秒前
牧尔芙发布了新的文献求助10
18秒前
19秒前
科研通AI6应助naych采纳,获得30
20秒前
牛牛完成签到 ,获得积分10
22秒前
mds完成签到 ,获得积分10
25秒前
25秒前
龙骑士25完成签到 ,获得积分10
29秒前
儒雅的十八完成签到,获得积分10
29秒前
32秒前
35秒前
自由的海燕完成签到,获得积分10
36秒前
彦子完成签到 ,获得积分10
37秒前
38秒前
牧尔芙完成签到 ,获得积分10
38秒前
天天天王发布了新的文献求助30
38秒前
39秒前
zzz发布了新的文献求助10
41秒前
rayc应助宗铁强采纳,获得10
44秒前
斯文败类应助YoLo采纳,获得10
45秒前
追寻夜香完成签到 ,获得积分10
45秒前
46秒前
复苏1234511发布了新的文献求助10
46秒前
山谷与花完成签到,获得积分20
47秒前
简单的八宝粥完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525104
关于积分的说明 14101027
捐赠科研通 4438870
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406507