AI-Driven HSI: Multimodality, Fusion, Challenges, and the Deep Learning Revolution

多模态 深度学习 人工智能 计算机科学 万维网
作者
David S. Bhatti,Youn-Suk Choi,Rahman S M Wahidur,Maleeka Bakhtawar,Sumin Kim,Surin Lee,Yong-Tae Lee,Heung-No Lee
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.06894
摘要

Hyperspectral imaging (HSI) captures spatial and spectral data, enabling analysis of features invisible to conventional systems. The technology is vital in fields such as weather monitoring, food quality control, counterfeit detection, healthcare diagnostics, and extending into defense, agriculture, and industrial automation at the same time. HSI has advanced with improvements in spectral resolution, miniaturization, and computational methods. This study provides an overview of the HSI, its applications, challenges in data fusion and the role of deep learning models in processing HSI data. We discuss how integration of multimodal HSI with AI, particularly with deep learning, improves classification accuracy and operational efficiency. Deep learning enhances HSI analysis in areas like feature extraction, change detection, denoising unmixing, dimensionality reduction, landcover mapping, data augmentation, spectral construction and super resolution. An emerging focus is the fusion of hyperspectral cameras with large language models (LLMs), referred as highbrain LLMs, enabling the development of advanced applications such as low visibility crash detection and face antispoofing. We also highlight key players in HSI industry, its compound annual growth rate and the growing industrial significance. The purpose is to offer insight to both technical and non-technical audience, covering HSI's images, trends, and future directions, while providing valuable information on HSI datasets and software libraries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
illusion完成签到,获得积分10
刚刚
蛙鼠兔完成签到,获得积分10
1秒前
金22完成签到,获得积分10
2秒前
研友_Z7WQzZ发布了新的文献求助10
2秒前
SYLH应助2316953734采纳,获得10
2秒前
小瑞完成签到,获得积分10
3秒前
研友_ED5GK发布了新的文献求助10
3秒前
kakafan发布了新的文献求助10
4秒前
4秒前
CodeCraft应助鱼在哪儿采纳,获得10
4秒前
CyrusSo524应助情殇采纳,获得10
5秒前
Su发布了新的文献求助10
5秒前
6秒前
Shipeng完成签到,获得积分20
8秒前
小羊烧鸡完成签到 ,获得积分10
8秒前
鱿鱼完成签到,获得积分10
8秒前
无名之辈完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
南风发布了新的文献求助10
11秒前
11秒前
水本无忧87完成签到,获得积分10
11秒前
12秒前
旺仔应助小新的石斛采纳,获得10
12秒前
CipherSage应助IVY1300采纳,获得10
12秒前
000发布了新的文献求助10
13秒前
heyuan1001完成签到,获得积分10
13秒前
13秒前
所所应助学术小白w采纳,获得10
14秒前
danna完成签到,获得积分10
14秒前
无聊的月饼完成签到 ,获得积分10
14秒前
雨醉东风发布了新的文献求助10
14秒前
15秒前
NIKI发布了新的文献求助10
15秒前
端庄一刀完成签到 ,获得积分10
16秒前
简单刺猬发布了新的文献求助10
16秒前
popcorn完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841415
求助须知:如何正确求助?哪些是违规求助? 3383528
关于积分的说明 10530178
捐赠科研通 3103621
什么是DOI,文献DOI怎么找? 1709337
邀请新用户注册赠送积分活动 823110
科研通“疑难数据库(出版商)”最低求助积分说明 773816