The predictive value of radiomics and deep learning for synchronous distant metastasis in clear cell renal cell carcinoma

无线电技术 肾细胞癌 预测值 转移 价值(数学) 医学 肾透明细胞癌 肿瘤科 癌症研究 内科学 放射科 计算机科学 癌症 机器学习
作者
Wanbin He,Chuan Zhou,Zhijun Yang,Yunfeng Zhang,Wenbo Zhang,Han He,Jia‐Yi Wang,Feng-Hai Zhou
出处
期刊:Discover Oncology [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1007/s12672-025-01806-x
摘要

The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC). A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software. Radiomic features were extracted via the FAE toolkit. The least absolute shrinkage and selection operator (LASSO) algorithm was employed to select features and build various machine learning models. Additionally, the largest cross-section of the tumor was cropped to train the deep learning model. Multiple deep learning models were trained to predict SDM in ccRCC patients. The results of the best machine learning model were then fused with those of the deep learning model to create a combined model. Of the 944 radiomic features identified, 15 were closely associated with SDM. With these 15 features, the support vector machine (SVM) model emerged as the most effective, demonstrating areas under the curve (AUC) of 0.860 and 0.813 in the training and validation cohort, respectively. Among the deep learning models, ResNet101 performed optimally, achieving AUC of 0.815 and 0.743 in the training and validation cohort, respectively. The combined model yielded an AUC of 0.863. Decision curve analysis suggested that the combined model offers superior clinical applicability. The model integrates radiomics and deep learning, showing significant potential in predicting SDM in ccRCC patients. It holds promise for supporting clinical decision-making, reducing missed diagnoses of SDM, and guiding patients in further enhancing their systemic examinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月如歌完成签到,获得积分0
1秒前
ljn0406完成签到 ,获得积分10
2秒前
胡杨完成签到,获得积分10
2秒前
keyan发布了新的文献求助10
3秒前
小肥羊发布了新的文献求助10
4秒前
你不知道完成签到 ,获得积分10
4秒前
6秒前
bkagyin应助yycc采纳,获得10
6秒前
FashionBoy应助lizhiqian2024采纳,获得10
8秒前
科研通AI5应助lizhiqian2024采纳,获得10
8秒前
9秒前
陈昭琼发布了新的文献求助10
12秒前
13秒前
13秒前
恋风恋歌发布了新的文献求助10
14秒前
不辞完成签到,获得积分10
17秒前
AI完成签到 ,获得积分10
17秒前
高兴可乐发布了新的文献求助20
19秒前
19秒前
19秒前
ay发布了新的文献求助10
20秒前
VvV完成签到,获得积分10
22秒前
yan完成签到,获得积分10
22秒前
勤劳涵山发布了新的文献求助10
24秒前
大鱼发布了新的文献求助10
25秒前
香菜味钠片完成签到,获得积分10
25秒前
啾啾完成签到,获得积分10
26秒前
27秒前
森林木发布了新的文献求助10
27秒前
ay完成签到,获得积分10
27秒前
27秒前
29秒前
29秒前
高兴可乐完成签到,获得积分20
29秒前
稳重奇异果应助凸迩丝儿采纳,获得10
30秒前
30秒前
负责母鸡完成签到,获得积分10
30秒前
Shan完成签到 ,获得积分10
33秒前
arisfield完成签到,获得积分10
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050