甲烷化
钴
铜
电化学
离解(化学)
法拉第效率
密度泛函理论
材料科学
二氧化碳电化学还原
选择性
解吸
甲烷
吸附
无机化学
催化作用
一氧化碳
化学
电极
计算化学
物理化学
有机化学
作者
Jiawei Li,Miaojin Wei,Bifa Ji,Sunpei Hu,Jing Xue,Donghao Zhao,H. Wang,Chunxiao Liu,Yifan Ye,Jilong Xu,Jie Zeng,Ruquan Ye,Yongping Zheng,Tingting Zheng,Chuan Xia
标识
DOI:10.1002/anie.202417008
摘要
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single‐atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity‐activity dilemma. In this study, we developed a single‐atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of ‐482.7 mA cm‐2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge‐binding, favours deep reduction to CH4 over the C‐C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity‐activity trade‐off, paving the way for efficient and scalable CO2‐to‐CH4 conversion technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI