An effective stereo SLAM with high-level primitives in underwater environment

计算机视觉 稳健性(进化) 人工智能 计算机科学 里程计 水下 同时定位和映射 视觉里程计 立体摄像机 立体视觉 机器人 移动机器人 地理 生物化学 化学 考古 基因
作者
Shuo Xu,Teng Ma,Ye Li,Shuoshuo Ding,Jingxuan Gao,Jiahao Xia,Haodong Qi,Huanghe Gu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105405-105405
标识
DOI:10.1088/1361-6501/ace645
摘要

Abstract Visual simultaneous localization and mapping (SLAM) algorithms face challenges in complex underwater scenarios, such as turbidity, dynamism, and low texture, where point features are unreliable and can lead to weakened or even failed systems. To overcome these issues, high-level object features are considered due to their accuracy and robustness. In this paper, we introduce an effective object-level SLAM method that employs a stereo camera to enhance the navigation robustness of autonomous underwater vehicles and generates a detailed semantic map. Point features and object features are integrated to serve the proposed approach. We begin by detecting 2D objects in images using a state-of-the-art neural network, followed by obtaining 3D objects described by the general model through the principle of multi-view geometry and eventually constructing semantic landmarks. To account for object data association, we present an object match method that takes into consideration the stereo camera characteristics in a single stereo frame and a filter-based approach to track the landmarks in odometry. Experiments are also conducted using the KITTI dataset and our sequences collected from the pool and coast. The evaluation results indicate that the proposed method can improve the performance of ORBSLAM2 in terms of both navigation robustness and mapping information in underwater scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研三井泽完成签到,获得积分10
刚刚
1秒前
恋雅颖月完成签到,获得积分10
1秒前
YUZU发布了新的文献求助10
2秒前
流砂完成签到,获得积分10
2秒前
SYLH应助electrodynamics采纳,获得10
2秒前
3秒前
5秒前
大男完成签到,获得积分10
5秒前
6秒前
yanyan发布了新的文献求助10
7秒前
慕青应助YUZU采纳,获得10
9秒前
10秒前
科研同路人完成签到,获得积分0
10秒前
11秒前
chen给ca的求助进行了留言
12秒前
星辰大海应助从容的子轩采纳,获得10
12秒前
勤劳溪灵完成签到,获得积分10
12秒前
13秒前
三三完成签到 ,获得积分10
14秒前
漫天繁星发布了新的文献求助10
16秒前
非而者厚应助秋兰兮麋芜采纳,获得10
16秒前
Lcccccc发布了新的文献求助10
17秒前
17秒前
小王爱学习完成签到,获得积分10
19秒前
小蘑菇应助iuhgnor采纳,获得10
19秒前
20秒前
20秒前
20秒前
Ava应助荆轲刺秦王采纳,获得10
20秒前
22秒前
小二郎应助Lcccccc采纳,获得10
23秒前
viyou完成签到,获得积分10
24秒前
猫咪乖乖爱你完成签到,获得积分10
24秒前
Yummy发布了新的文献求助30
24秒前
广州城建职业技术学院完成签到,获得积分10
25秒前
25秒前
田様应助yanyan采纳,获得10
26秒前
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960