Task offloading and resource allocation based on DL-GA in mobile edge computing

计算机科学 移动边缘计算 计算卸载 云计算 边缘计算 最优化问题 移动设备 延迟(音频) 任务(项目管理) 人工神经网络 GSM演进的增强数据速率 分布式计算 带宽(计算) 服务器 边缘设备 计算机网络 人工智能 算法 操作系统 经济 管理 电信
作者
HANG GU,MINJUAN ZHANG,WENZAO LI,YUWEN PAN
出处
期刊:Turkish Journal of Electrical Engineering and Computer Sciences [Scientific and Technological Research Council of Turkey (TUBITAK)]
卷期号:31 (3): 498-515
标识
DOI:10.55730/1300-0632.3998
摘要

With the rapid development of 5G and the Internet of Things (IoT), the traditional cloud computing architecture struggle to support the booming computation-intensive and latency-sensitive applications. Mobile edge computing (MEC) has emerged as a solution which enables abundant IoT tasks to be offloaded to edge services. However, task offloading and resource allocation remain challenges in MEC framework. In this paper, we add the total number of offloaded tasks to the optimization objective and apply algorithm called Deep Learning Trained by Genetic Algorithm (DL-GA) to maximize the value function, which is defined as a weighted sum of energy consumption, latency, and the number of offloaded tasks. First, we use GA to optimize the task offloading scheme and store the states and labels of scenario. Each state consists of five parameters: the IDs of all tasks generated in this scenario, the cost of each task, whether the task is offloaded, bandwidth occupied by offloaded task and remaining bandwidth of edge server. The labels are the tasks that are currently selected for offloading. Then, these states and labels will be used to train neural network. Finally, the trained neural network can quickly give optimization solutions. Simulation results show that DL-GA can execute 75 to 450 times faster than GA without losing much optimization power. At the same time, DL-GA has stronger optimization capability compared to Deep Q-Learning Network (DQN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzznznnn完成签到,获得积分20
刚刚
whisper完成签到,获得积分10
刚刚
wanci应助山阴路没有夏天采纳,获得10
刚刚
1秒前
代何发布了新的文献求助30
1秒前
1秒前
司空晓瑶完成签到 ,获得积分10
2秒前
nkmenghan完成签到,获得积分10
2秒前
dhppp完成签到,获得积分10
2秒前
2秒前
七昂完成签到,获得积分10
2秒前
不安服饰发布了新的文献求助10
3秒前
阿翡呐完成签到,获得积分10
3秒前
小陈完成签到,获得积分20
3秒前
阿南发布了新的文献求助10
3秒前
4秒前
健壮的芷容完成签到,获得积分10
5秒前
九霄发布了新的文献求助10
5秒前
5秒前
l玖应助Jane采纳,获得10
6秒前
zzznznnn发布了新的文献求助10
7秒前
大芳儿发布了新的文献求助10
7秒前
科研通AI5应助sybs采纳,获得10
7秒前
万能图书馆应助LIJINGGE采纳,获得10
7秒前
LJ完成签到,获得积分10
8秒前
zhou完成签到,获得积分10
8秒前
9秒前
SRsora发布了新的文献求助10
9秒前
11秒前
炸鸡啤酒发布了新的文献求助10
11秒前
852应助笑点低易真采纳,获得10
12秒前
Orange应助polaris采纳,获得10
12秒前
12秒前
施宇宙完成签到,获得积分10
13秒前
ambitiouslu发布了新的文献求助10
14秒前
14秒前
大芳儿完成签到,获得积分10
14秒前
不器发布了新的文献求助10
14秒前
酷波er应助困困采纳,获得20
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093