Incremental value of radiomics with machine learning to the existing prognostic models for predicting outcome in renal cell carcinoma

列线图 无线电技术 医学 比例危险模型 接收机工作特性 肾细胞癌 Lasso(编程语言) 队列 肿瘤科 危险系数 阶段(地层学) 机器学习 人工智能 内科学 放射科 置信区间 计算机科学 古生物学 万维网 生物
作者
Jiajun Xing,Yiyang Liu,Zhongyuan Wang,Aiming Xu,Shifeng Su,Sipeng Shen,Zengjun Wang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:6
标识
DOI:10.3389/fonc.2023.1036734
摘要

Purpose To systematically evaluate the potential of radiomics coupled with machine-learning algorithms to improve the predictive power for overall survival (OS) of renal cell carcinoma (RCC). Methods A total of 689 RCC patients (281 in the training cohort, 225 in the validation cohort 1 and 183 in the validation cohort 2) who underwent preoperative contrast-enhanced CT and surgical treatment were recruited from three independent databases and one institution. 851 radiomics features were screened using machine-learning algorithm, including Random Forest and Lasso-COX Regression, to establish radiomics signature. The clinical and radiomics nomogram were built by multivariate COX regression. The models were further assessed by Time-dependent receiver operator characteristic, concordance index, calibration curve, clinical impact curve and decision curve analysis. Result The radiomics signature comprised 11 prognosis-related features and was significantly correlated with OS in the training and two validation cohorts (Hazard Ratios: 2.718 (2.246,3.291)). Based on radiomics signature, WHOISUP, SSIGN, TNM Stage and clinical score, the radiomics nomogram has been developed. Compared with the existing prognostic models, the AUCs of 5 years OS prediction of the radiomics nomogram were superior to the TNM, WHOISUP and SSIGN model in the training cohort (0.841 vs 0.734, 0.707, 0.644) and validation cohort2 (0.917 vs 0.707, 0.773, 0.771). Stratification analysis suggested that the sensitivity of some drugs and pathways in cancer were observed different for RCC patients with high-and low-radiomics scores. Conclusion This study showed the application of contrast-enhanced CT-based radiomics in RCC patients, creating novel radiomics nomogram that could be used to predict OS. Radiomics provided incremental prognostic value to the existing models and significantly improved the predictive power. The radiomics nomogram might be helpful for clinicians to evaluate the benefit of surgery or adjuvant therapy and make individualized therapeutic regimens for patients with renal cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ww完成签到,获得积分10
2秒前
赘婿应助lee采纳,获得10
2秒前
科研通AI2S应助剑来不来采纳,获得10
4秒前
4秒前
Amazing_Grace发布了新的文献求助10
6秒前
duo关闭了duo文献求助
6秒前
xy发布了新的文献求助10
6秒前
香蕉觅云应助shinn采纳,获得10
6秒前
LLLLL发布了新的文献求助30
6秒前
9秒前
大模型应助mzl采纳,获得10
10秒前
12秒前
13秒前
隐形曼青应助陈江河采纳,获得10
13秒前
luxi0714完成签到,获得积分20
13秒前
14秒前
lwh104完成签到,获得积分0
18秒前
理理完成签到 ,获得积分10
18秒前
fdzzz发布了新的文献求助10
18秒前
19秒前
领导范儿应助彩色飞瑶采纳,获得10
20秒前
21秒前
bobo呀发布了新的文献求助10
22秒前
陈江河发布了新的文献求助10
25秒前
小蚂蚁发布了新的文献求助10
27秒前
可靠馒头完成签到,获得积分10
27秒前
徐鎏洋完成签到 ,获得积分10
34秒前
小慧儿发布了新的文献求助10
35秒前
37秒前
昏睡的傲菡完成签到 ,获得积分10
38秒前
zy发布了新的文献求助10
40秒前
酥瓜完成签到 ,获得积分10
41秒前
42秒前
sun完成签到,获得积分10
43秒前
鲷哥发布了新的文献求助20
44秒前
所所应助端庄白开水采纳,获得10
45秒前
mnhkj发布了新的文献求助10
45秒前
Yolenders完成签到 ,获得积分0
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171390
求助须知:如何正确求助?哪些是违规求助? 3706898
关于积分的说明 11695659
捐赠科研通 3392544
什么是DOI,文献DOI怎么找? 1860795
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754