HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction

计算机科学 人工智能 压缩传感 深度学习 迭代重建 压扩 阈值 背景(考古学) 卷积神经网络 模式识别(心理学) 人工神经网络 迭代法 算法 频道(广播) 图像(数学) 古生物学 生物 正交频分复用 计算机网络
作者
Chenghu Geng,Mingfeng Jiang,Xian Fang,Yang Li,Guangri Jin,Aixi Chen,Feng Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:232: 107440-107440 被引量:9
标识
DOI:10.1016/j.cmpb.2023.107440
摘要

Compressed sensing (CS) is often used to accelerate magnetic resonance image (MRI) reconstruction from undersampled k-space data. A novelty deeply unfolded networks (DUNs) based method, designed by unfolding a traditional CS-MRI optimization algorithm into deep networks, can provide significantly faster reconstruction speeds than traditional CS-MRI methods while improving image quality. In this paper, we propose a High-Throughput Fast Iterative Shrinkage Thresholding Network (HFIST-Net) for reconstructing MR images from sparse measurements by combining traditional model-based CS techniques and data-driven deep learning methods. Specifically, the conventional Fast Iterative Shrinkage Thresholding Algorithm (FISTA) method is expanded as a deep network. To break the bottleneck of information transmission, a multi-channel fusion mechanism is proposed to improve the efficiency of information transmission between adjacent network stages. Moreover, a simple yet efficient channel attention block, called Gaussian context transformer (GCT), is proposed to improve the characterization capabilities of deep Convolutional Neural Network (CNN,) which utilizes Gaussian functions that satisfy preset relationships to achieve context feature excitation. T1 and T2 brain MR images from the FastMRI dataset are used to validate the performance of the proposed HFIST-Net. The qualitative and quantitative results showed that our method is superior to those compared state-of-the-art unfolded deep learning networks. The proposed HFIST-Net is capable of reconstructing more accurate MR image details from highly undersampled k-space data while maintaining fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子宁完成签到,获得积分10
刚刚
叫啥不吃饭完成签到,获得积分10
2秒前
5秒前
Lucifer完成签到,获得积分10
5秒前
丽江阿镇完成签到,获得积分10
6秒前
8秒前
少夫人完成签到,获得积分10
10秒前
木木完成签到,获得积分10
11秒前
11秒前
13秒前
搞怪书兰发布了新的文献求助10
14秒前
Triptolide完成签到,获得积分10
16秒前
今后应助Howl采纳,获得10
16秒前
yhyhyh发布了新的文献求助10
16秒前
闪闪路人发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
rgsrgrs发布了新的文献求助10
21秒前
随遇而安应助小雪采纳,获得20
23秒前
23秒前
汉堡包应助meng采纳,获得10
23秒前
24秒前
a成发布了新的文献求助10
24秒前
chaosyw完成签到,获得积分10
27秒前
28秒前
glay完成签到 ,获得积分10
28秒前
Howl发布了新的文献求助10
29秒前
29秒前
碧空完成签到,获得积分10
30秒前
丰富诗柳发布了新的文献求助10
30秒前
烟花应助rgsrgrs采纳,获得10
30秒前
31秒前
31秒前
32秒前
小雪发布了新的文献求助10
34秒前
gtgyh发布了新的文献求助10
34秒前
xiaojiu发布了新的文献求助10
35秒前
35秒前
香蕉觅云应助哦哦采纳,获得10
37秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848752
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568084
捐赠科研通 3112149
什么是DOI,文献DOI怎么找? 1715102
邀请新用户注册赠送积分活动 825561
科研通“疑难数据库(出版商)”最低求助积分说明 775663