HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction

计算机科学 吞吐量 收缩率 人工智能 迭代重建 阈值 模式识别(心理学) 计算机视觉 图像处理 算法 计算机图形学(图像) 图像(数学) 电信 机器学习 无线
作者
Chenghu Geng,Mingfeng Jiang,Xian Fang,Yang Li,Guangri Jin,Aixi Chen,Feng Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:232: 107440-107440 被引量:18
标识
DOI:10.1016/j.cmpb.2023.107440
摘要

Compressed sensing (CS) is often used to accelerate magnetic resonance image (MRI) reconstruction from undersampled k-space data. A novelty deeply unfolded networks (DUNs) based method, designed by unfolding a traditional CS-MRI optimization algorithm into deep networks, can provide significantly faster reconstruction speeds than traditional CS-MRI methods while improving image quality. In this paper, we propose a High-Throughput Fast Iterative Shrinkage Thresholding Network (HFIST-Net) for reconstructing MR images from sparse measurements by combining traditional model-based CS techniques and data-driven deep learning methods. Specifically, the conventional Fast Iterative Shrinkage Thresholding Algorithm (FISTA) method is expanded as a deep network. To break the bottleneck of information transmission, a multi-channel fusion mechanism is proposed to improve the efficiency of information transmission between adjacent network stages. Moreover, a simple yet efficient channel attention block, called Gaussian context transformer (GCT), is proposed to improve the characterization capabilities of deep Convolutional Neural Network (CNN,) which utilizes Gaussian functions that satisfy preset relationships to achieve context feature excitation. T1 and T2 brain MR images from the FastMRI dataset are used to validate the performance of the proposed HFIST-Net. The qualitative and quantitative results showed that our method is superior to those compared state-of-the-art unfolded deep learning networks. The proposed HFIST-Net is capable of reconstructing more accurate MR image details from highly undersampled k-space data while maintaining fast computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条棒棒糖完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
虚幻白玉完成签到,获得积分10
3秒前
FashionBoy应助super chan采纳,获得10
3秒前
4秒前
心灵美的大地完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助张亚博采纳,获得10
5秒前
cyno发布了新的文献求助10
5秒前
5秒前
Yang完成签到,获得积分10
5秒前
852应助赖床鸭采纳,获得10
5秒前
_蝴蝶小姐完成签到,获得积分20
5秒前
Ying应助君莫笑采纳,获得10
6秒前
6秒前
合适的又菱完成签到,获得积分20
6秒前
务实奎发布了新的文献求助10
7秒前
wwx完成签到,获得积分10
7秒前
深情丸子发布了新的文献求助10
7秒前
虚幻白玉发布了新的文献求助10
7秒前
英姑应助fan采纳,获得10
7秒前
乱世老张完成签到,获得积分10
8秒前
香蕉觅云应助Tonald Yang采纳,获得10
8秒前
AA发布了新的文献求助10
8秒前
alei1203完成签到,获得积分10
8秒前
自觉远山发布了新的文献求助10
9秒前
native发布了新的文献求助10
9秒前
ayang001完成签到,获得积分10
9秒前
9秒前
11秒前
曹小仙男完成签到 ,获得积分10
11秒前
皆可发布了新的文献求助10
12秒前
雪梅完成签到 ,获得积分10
12秒前
科目三应助研友_LMo56Z采纳,获得10
12秒前
CodeCraft应助研友_LMo56Z采纳,获得10
12秒前
勤奋冷之完成签到,获得积分10
13秒前
蓝莓完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057