Cervical and lumbar MRI-based vertebral bone quality scores: a novel diagnostic tool for the prediction osteoporosis

医学 骨质疏松症 骨量减少 放射科 腰椎 磁共振成像 骨矿物 核医学 内科学
作者
Sevde Nur Emir,Elif Dilara Topcuoğlu
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851251347761
摘要

Background Osteoporosis is a significant global health issue, particularly in aging populations. Dual-energy X-ray absorptiometry (DXA) is the gold standard for osteoporosis diagnosis; however, its limitations have driven research into alternative methods. Purpose To explore the diagnostic potential of cervical MRI-derived vertebral bone quality (VBQ) scores in predicting osteoporosis, in comparison to lumbar vertebra measurements. Material and Methods This retrospective study included patients who had DXA scans between 2020 and 2023 and underwent cervical MRI within 6 months. A total of 213 patients were classified into normal (n = 72), osteopenia (n = 82), and osteoporosis (n = 59) groups based on their DXA T-scores. T1-weighted MRI images were used to measure vertebral body signal intensity (SI) and cerebrospinal fluid (CSF) SI, which were then used to calculate VBQ scores. Both cervical and lumbar VBQ scores were compared to DXA results to evaluate diagnostic efficacy. Results Cervical VBQ scores, particularly the C4:posterior fossa CSF SI ratio, demonstrated significant correlations with DXA T-scores ( P = 1.7 × 10 −5 ). The study found that the C4:posterior fossa CSF SI ratio had a high diagnostic accuracy (AUC = 0.81) for distinguishing between normal bone density and osteopenia/osteoporosis. Furthermore, cervical VBQ scores showed stronger correlations with bone density than lumbar scores, suggesting that the cervical spine may serve as a more effective diagnostic region. Conclusion Cervical MRI-derived VBQ scores, especially the C4:posterior fossa CSF SI ratio, offer a promising non-invasive tool for osteoporosis diagnosis. This method may provide a complementary or alternative diagnostic approach to DXA, particularly in cases where lumbar imaging is insufficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随机完成签到,获得积分10
1秒前
如意的从云完成签到,获得积分10
1秒前
msd2phd完成签到,获得积分10
1秒前
2秒前
2秒前
标致的问雁完成签到,获得积分10
2秒前
一坨完成签到 ,获得积分10
2秒前
good233完成签到,获得积分10
2秒前
2秒前
damnxas完成签到,获得积分10
3秒前
3秒前
4秒前
三叶草完成签到,获得积分10
4秒前
求知的土拨鼠完成签到,获得积分10
4秒前
ChaseY完成签到,获得积分10
4秒前
哎哟很烦完成签到,获得积分10
4秒前
微笑友灵完成签到,获得积分10
4秒前
felix发布了新的文献求助10
4秒前
王梦秋完成签到 ,获得积分10
5秒前
大小罐子完成签到,获得积分10
5秒前
5秒前
共享精神应助随机采纳,获得10
6秒前
威武初瑶发布了新的文献求助10
6秒前
6秒前
卓奕雯完成签到,获得积分10
7秒前
Ronin完成签到,获得积分10
7秒前
wyhhh完成签到,获得积分10
7秒前
8秒前
燕烟发布了新的文献求助10
8秒前
jihe关注了科研通微信公众号
8秒前
小月986完成签到,获得积分10
8秒前
静水流深完成签到,获得积分10
9秒前
9秒前
10秒前
ryan1300完成签到 ,获得积分10
11秒前
PYY发布了新的文献求助10
11秒前
Phonyeee完成签到,获得积分10
12秒前
zcl应助felix采纳,获得50
12秒前
sunyanghu369发布了新的文献求助10
12秒前
达达完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935909
求助须知:如何正确求助?哪些是违规求助? 4203582
关于积分的说明 13060246
捐赠科研通 3980919
什么是DOI,文献DOI怎么找? 2179848
邀请新用户注册赠送积分活动 1195794
关于科研通互助平台的介绍 1107678