Inferring Species Interactions From Co‐occurrence Networks With Environmental DNA Metabarcoding Data in a Coastal Marine Food Web

生物 环境DNA 食物网 共现 生态学 生物多样性 生态系统 人工智能 计算机科学
作者
Elizabeth Boyse,Kevin P. Robinson,Ian Carr,Elena Valsecchi,Maria Beger,Simon J. Goodman
出处
期刊:Molecular Ecology [Wiley]
标识
DOI:10.1111/mec.17701
摘要

ABSTRACT A good understanding of biotic interactions is necessary to accurately predict the vulnerability of ecosystems to climate change. Recently, co‐occurrence networks built from environmental DNA (eDNA) metabarcoding data have arisen as a tool to explore interspecific interactions in ecological communities exposed to different human and environmental pressures. Such networks can identify environmentally driven relationships in microbial and eukaryotic communities, but whether inferred co‐occurrences robustly represent biotic interactions remains unclear. Here, we tackle this challenge and compare spatio‐temporal variability in the structure and complexity of inferred co‐occurrence networks and food webs, using 60 eDNA samples covering vertebrates and other eukaryotes in a North Sea coastal ecosystem. We compare topological characteristics and identify highly connected species across spatial and temporal subsets to evaluate variance in community composition and structure. We find consistent trends in topological characteristics across eDNA‐derived co‐occurrence networks and food webs that support some ability for the co‐occurrence networks to detect real ecological processes, despite trophic interactions forming a minority of significant co‐occurrences. The lack of significant trophic interactions detected in co‐occurrence networks may result from ecological complexities, such as generalist predators having flexible interactions or behavioural partitioning, the inability to distinguish age class with eDNA or co‐occurrences being driven by non‐trophic or abiotic interactions. We find support for using eDNA‐derived co‐occurrence networks to infer ecological interactions, but further work is needed to assess their power to reliably detect and differentiate different interaction types and overcome methodological limitations, such as species detection uncertainties, which could influence inferred ecosystem complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dwei1976发布了新的文献求助10
2秒前
ooo娜完成签到 ,获得积分10
2秒前
结实冰菱完成签到,获得积分10
2秒前
井九完成签到 ,获得积分10
2秒前
你都吃了那么多完成签到 ,获得积分10
3秒前
Juid发布了新的文献求助10
3秒前
3秒前
Lucas应助wcy采纳,获得10
3秒前
共享精神应助123采纳,获得10
3秒前
野性的十三完成签到,获得积分10
3秒前
fanjinzhu完成签到,获得积分10
4秒前
chonger完成签到,获得积分10
4秒前
5秒前
云尘忆梦发布了新的文献求助10
5秒前
MZT发布了新的文献求助10
6秒前
6秒前
小贝完成签到,获得积分20
6秒前
kexing完成签到,获得积分10
6秒前
酷波er应助LiusuWang采纳,获得10
6秒前
活力立诚完成签到,获得积分10
7秒前
7秒前
7秒前
平常无颜发布了新的文献求助10
8秒前
cola完成签到,获得积分10
9秒前
Steven发布了新的文献求助10
9秒前
菠萝炒饭发布了新的文献求助50
9秒前
周小鱼发布了新的文献求助20
9秒前
10秒前
10秒前
JIyong完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
何1发布了新的文献求助10
10秒前
11秒前
36038138完成签到 ,获得积分10
11秒前
111完成签到,获得积分20
11秒前
11秒前
12秒前
李健应助前行者采纳,获得30
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846