清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Explainable Federated Framework for Enhanced Security and Privacy in Connected Vehicles Against Advanced Persistent Threats

计算机安全 互联网隐私 计算机科学 业务
作者
G. K. Sudhina Kumar,Krishna Prakash,Balachandra Muniyal,Muttukrishnan Rajarajan
出处
期刊:IEEE open journal of vehicular technology [Institute of Electrical and Electronics Engineers]
卷期号:6: 1438-1463 被引量:2
标识
DOI:10.1109/ojvt.2025.3576366
摘要

The increasing adoption of autonomous and intelligent vehicles within ground transportation systems faces new security challenges. This shift from human-controlled operations opens up a broader attack surface for malicious players. As the interconnected Internet of Things (IoT) become ubiquitous in vehicles, they continuously generate and exchange a large amount of data. This tendency creates vulnerabilities that attackers can exploit using sophisticated techniques, such as Advanced Persistent Threats (APT). Detecting APTs in IoT-enabled vehicular environments is crucial. These APTs demand advanced detection mechanisms. The critical need for vehicular data privacy restricts traditional centralized Machine Learning (ML) approaches. Furthermore, the absence of publicly available APT datasets in the vehicular domain complicates model development and validation, creating a significant gap in cybersecurity capabilities for this evolving vehicular domain. This research proposes a novel Federated Deep Neural Network (FDNN) framework with a privacy-preserving technique to address these concerns. This study presents the key challenges in the APT detection phase and outlines the novel contributions to the body of knowledge. The research questions guiding the investigation are addressed and discussed. The features of the UNSW-NB15, Edge-IIoTset, and CSE-CIC-IDS2018 datasets are aligned with different stages of APT attacks. Using these datasets, the developed framework is analyzed and evaluated. For the mentioned datasets, the framework without privacy-preserving technique shows high APT detection accuracies of 97.32%, 96.81% and 98.06%, respectively. However, with the privacy-preserving technique, the framework shows 95.62%, 96.11% and 95.63% accuracies, respectively. All results with other evaluation metrics, such as Precision, False positive rate, F1 score etc., are tabulated. The developed framework is subjected to “Shapley Additive explanations (SHAP),” analysis to filter the considerably influential features in APT detection. This research establishes the efficacy of a novel framework for detecting APTs in distributed vehicular environments. The framework achieves superior performance by minimizing the number of data and reducing the number of features, which is demonstrated through rigorous experimentation on multiple benchmark datasets. The potential of the developed framework to detect the APTs in the cross-domain is discussed in future works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nan发布了新的文献求助10
8秒前
23秒前
hhuajw应助Nan采纳,获得10
24秒前
27秒前
jiuzhege完成签到 ,获得积分10
33秒前
37秒前
37秒前
51秒前
牛拉犁完成签到 ,获得积分10
1分钟前
青海盐湖所李阳阳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
chengzi发布了新的文献求助10
1分钟前
VDC发布了新的文献求助10
1分钟前
楷楷不偷后场完成签到,获得积分20
1分钟前
江東完成签到 ,获得积分10
2分钟前
称心的高丽完成签到 ,获得积分10
2分钟前
无语的成仁完成签到,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
CodeCraft应助张子捷采纳,获得10
3分钟前
一天完成签到 ,获得积分10
3分钟前
3分钟前
张子捷发布了新的文献求助10
3分钟前
土豪的灵竹完成签到 ,获得积分10
3分钟前
juliar完成签到 ,获得积分10
3分钟前
BowieHuang应助VDC采纳,获得10
3分钟前
踏雪完成签到,获得积分10
3分钟前
BowieHuang应助易一采纳,获得10
4分钟前
闻巷雨完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小明完成签到 ,获得积分10
4分钟前
VDC完成签到,获得积分0
4分钟前
VDC发布了新的文献求助10
4分钟前
sevenhill完成签到 ,获得积分0
5分钟前
自然的含蕾完成签到 ,获得积分10
5分钟前
易一完成签到 ,获得积分10
5分钟前
新新新完成签到 ,获得积分10
5分钟前
蛋卷完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789162
求助须知:如何正确求助?哪些是违规求助? 5716272
关于积分的说明 15474278
捐赠科研通 4917049
什么是DOI,文献DOI怎么找? 2646747
邀请新用户注册赠送积分活动 1594430
关于科研通互助平台的介绍 1548891