阳极
石墨烯
材料科学
气凝胶
氧化物
化学工程
电池(电)
枝晶(数学)
阴极
碳纤维
纳米技术
冶金
复合材料
化学
电极
复合数
功率(物理)
物理化学
工程类
物理
量子力学
数学
几何学
作者
Mengmeng Liu,Dezhi Kong,Ningning Chu,Gang Zhi,Hui Wang,Tingting Xu,Xinchang Wang,Xinjian Li,Zhuangfei Zhang,Hui Ying Yang,Ye Wang
标识
DOI:10.1002/advs.202417638
摘要
Abstract Sodium metal anode holds great potential for high energy density sodium batteries. However, its practical utilization is impeded by significant volume change and uncontrolled dendrite growth. To tackle these issues, a three‐dimensional (3D) hierarchical porous sodiophilic reduced graphene oxide/diamane (rGO/diamane) microlattice aerogel is constructed by a direct ink writing (DIW) 3D printing (3DP) method. The molten Na is diffused into the rGO/diamane host to form Na@rGO/diamane anode, which can deliver an ultra‐high capacity of 78.60 mAh cm −2 (1090.94 mAh g −1 ). Benefiting from uniform ion distribution and homogeneously distributed sodiophilic diamane enabled dendrite‐free deposition morphology, the Na@rGO/diamane anodes exhibit a long cycle‐life of over 7200 h at 1 mA cm −2 with 1 mAh cm −2 . Furthermore, the Na@rGO/diamane anode also enhances the long‐term stability at an elevated operation temperature of 60 °C, sustaining a prolonged lifespan of 400 h at 1 mA cm −2 with 1 mAh cm −2 . Notably, when integrated with the Na 3 V 2 (PO 4 ) 3 @carbon (NVP@C) cathode and Na@rGO/diamane anode, the full cell delivers sustained longevity, maintaining a lifespan of over 2000 cycles with a capacity retention rate of 95.72%. This work sheds new insights into the application of diamane for the development of stable and high‐performance sodium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI