Dual-MOF-Layered Films via Solution Shearing Approach: A Versatile Platform for Tunable Chemiresistive Sensors

材料科学 剪切(物理) 纳米技术 对偶(语法数字) 光电子学 复合材料 文学类 艺术
作者
Chungseong Park,Junhee Woo,Mingyu Jeon,Jong Won Baek,Euichul Shin,Jihan Kim,Steve Park,Il‐Doo Kim
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c18848
摘要

Metal–organic frameworks (MOFs) are ideal for gas sensing due to their high porosity and chemical diversity. However, their low electrical conductivity has traditionally limited their application in chemiresistive-type sensors. The recent development of electrically conductive MOFs (cMOFs) has addressed this limitation. However, directly designing cMOFs with specific sensing properties remains challenging due to the limited understanding of their structure–property relationships. At this stage, the synergistic integration of cMOFs with conventional insulating MOFs has emerged as a viable solution, enabling diverse gas interactions and the rational design of sensing properties. Despite this potential, exploration of the diverse roles of MOFs in such composites remains underutilized. Herein, we develop a series of MOF-on-cMOF sensors and demonstrate their tunable sensing properties. A two-step solution-shearing-based film fabrication method enables facile integration of cMOFs with a wide range of conventional MOFs in layered structures. On cMOF thin film as a primary sensing layer, secondary MOF layers with different pore structures and adsorption properties were strategically selected and deposited. These layered film sensors exhibited tunable sensing properties, including enhanced sensitivity, selectivity, response speed, and recovery for analytes such as NH3, H2S, and NO2. These improvements cannot be achieved solely through the conventional role of MOFs as sieving layers. Furthermore, computational analyses elucidated the structure–property relationships underlying these improvements, offering key insights into the rational design of MOF-based gas sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大尾巴白完成签到,获得积分10
3秒前
笑点低的凝阳完成签到,获得积分10
3秒前
tkxfy完成签到,获得积分10
3秒前
uuuu完成签到 ,获得积分10
4秒前
就晚安喽完成签到 ,获得积分10
5秒前
光亮面包完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
5秒前
airtermis完成签到 ,获得积分10
6秒前
xkhxh完成签到 ,获得积分10
6秒前
大个应助liuzm采纳,获得10
6秒前
开始完成签到,获得积分10
8秒前
8秒前
9秒前
可爱的函函应助Dr.L采纳,获得10
10秒前
samtol完成签到,获得积分10
12秒前
自由寻琴完成签到,获得积分10
12秒前
13秒前
1111发布了新的文献求助10
13秒前
15秒前
17秒前
17秒前
威武的初兰完成签到 ,获得积分10
17秒前
CYY发布了新的文献求助10
18秒前
orixero应助nomore采纳,获得10
19秒前
20秒前
21秒前
luckin完成签到,获得积分10
21秒前
Xieyusen完成签到,获得积分10
22秒前
MQQ发布了新的文献求助30
22秒前
wilson完成签到,获得积分10
23秒前
二月完成签到,获得积分10
24秒前
欧维发布了新的文献求助10
27秒前
上官若男应助一YI采纳,获得10
28秒前
谦让寻凝完成签到 ,获得积分10
28秒前
1111完成签到,获得积分10
28秒前
Delight完成签到 ,获得积分10
29秒前
Singsea发布了新的文献求助10
34秒前
Reese321完成签到 ,获得积分10
35秒前
海德堡完成签到,获得积分10
41秒前
陶醉书包完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275