High-speed control and navigation for quadrupedal robots on complex and discrete terrain

计算机科学 管道(软件) 导线 机器人 地形 启发式 过程(计算) 模拟 人工智能 实时计算 控制工程 工程类 操作系统 地理 程序设计语言 大地测量学 生物 生态学
作者
Hyeongjun Kim,Hyunsik Oh,Jeongsoo Park,Y. H. KIM,Donghoon Youm,Moonkyu Jung,Minho Lee,Jemin Hwangbo
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:10 (102): eads6192-eads6192 被引量:2
标识
DOI:10.1126/scirobotics.ads6192
摘要

High-speed legged navigation in discrete and geometrically complex environments is a challenging task because of the high–degree-of-freedom dynamics and long-horizon, nonconvex nature of the optimization problem. In this work, we propose a hierarchical navigation pipeline for legged robots that can traverse such environments at high speed. The proposed pipeline consists of a planner and tracker module. The planner module finds physically feasible foothold plans by sampling-based optimization with fast sequential filtering using heuristics and a neural network. Subsequently, rollouts are performed in a physics simulation to identify the best foothold plan regarding the engineered cost function and to confirm its physical consistency. This hierarchical planning module is computationally efficient and physically accurate at the same time. The tracker aims to accurately step on the target footholds from the planning module. During the training stage, the foothold target distribution is given by a generative model that is trained competitively with the tracker. This process ensures that the tracker is trained in an environment with the desired difficulty. The resulting tracker can overcome terrains that are more difficult than what the previous methods could manage. We demonstrated our approach using Raibo, our in-house dynamic quadruped robot. The results were dynamic and agile motions: Raibo is capable of running on vertical walls, jumping a 1.3-meter gap, running over stepping stones at 4 meters per second, and autonomously navigating on terrains full of 30° ramps, stairs, and boxes of various sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
yang完成签到,获得积分10
3秒前
yywlx发布了新的文献求助10
3秒前
王王应助朴素慕晴采纳,获得30
3秒前
充电宝应助科研小孟采纳,获得10
3秒前
coco234完成签到,获得积分10
5秒前
南曦完成签到,获得积分20
6秒前
YifanWang应助小管采纳,获得10
6秒前
7秒前
彪壮的绮烟完成签到,获得积分10
7秒前
7秒前
桐桐应助柒年啵啵采纳,获得10
8秒前
8秒前
9秒前
传奇3应助十一采纳,获得10
10秒前
Owen应助十一采纳,获得10
10秒前
万能图书馆应助十一采纳,获得10
10秒前
上官若男应助十一采纳,获得10
10秒前
orixero应助十一采纳,获得10
10秒前
英俊的铭应助十一采纳,获得10
10秒前
情怀应助十一采纳,获得10
10秒前
情怀应助十一采纳,获得10
10秒前
爆米花应助十一采纳,获得10
10秒前
传奇3应助十一采纳,获得10
10秒前
悠悠发布了新的文献求助10
11秒前
Marianna完成签到,获得积分10
11秒前
陈陈完成签到,获得积分10
12秒前
李健发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
熊若宇发布了新的文献求助10
17秒前
贾亮完成签到,获得积分10
17秒前
耍酷的卿应助xyyyy79采纳,获得10
17秒前
耍酷的卿应助xyyyy79采纳,获得10
18秒前
吃饭了吗123完成签到,获得积分10
18秒前
在水一方应助柒年啵啵采纳,获得10
21秒前
yywlx完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761559
求助须知:如何正确求助?哪些是违规求助? 5530299
关于积分的说明 15399902
捐赠科研通 4897908
什么是DOI,文献DOI怎么找? 2634567
邀请新用户注册赠送积分活动 1582710
关于科研通互助平台的介绍 1537963