材料科学
电极
电解质
锂(药物)
图层(电子)
硅
电池(电)
化学工程
离子
纳米技术
复合材料
光电子学
化学
内分泌学
物理化学
功率(物理)
有机化学
工程类
物理
医学
量子力学
作者
Wenyan Chen,Zhen Zhang,Fangchang Zhang,Zhenyao Wei,Pengxian Li,Chao‐Yang Wang,Meng Gu,Yonghong Deng,Jian Chang
标识
DOI:10.1002/adma.202506911
摘要
Abstract The silicon microparticles (SiMPs) offer a promising solution for high‐energy‐density lithium‐ion battery systems. However, the inevitable volume expansion (>300%) of SiMPs during alloying often leads to particle breakage, interface rupture, and electrode separation, resulting in rapid capacity decay. Herein, an effective strategy is proposed for designing a novel solid–liquid hybrid electrode (Si@EGaSn) for high‐energy‐density flexible lithium‐ion batteries. The Si@EGaSn electrode has a liquid‐phase top layer containing SiMPs and a solid‐phase copper gallium alloy bottom layer. The top layer can not only electrically connect the fractured SiMPs, but also form a stable solid electrolyte interface during alloying processes. The bottom layer can firmly adhere the electrodes to the current collector. Consequently, the optimal Si@EGaSn electrode delivers a highly reversible capacity of 767.1 mAh g −1 at 0.5 A g −1 and a high capacity retention of >99% during 200 cycles. After loading the electrode into metallic textiles, the assembled high‐voltage pouch cell of NCM811//Si@EGaSn shows a high areal capacity of 3.2 mAh cm −2 , high volumetric energy density of 500 Wh L −1 and negligible capacity decay during 3000 flexing cycles at a small bending radius of 4.0 mm. This work provides a new electrode design approach to achieve high‐energy‐density flexible lithium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI